

Education in CEM and EMC at Chalmers

Prof. Thomas Rylander | Dept. of Electrical Engineering | 2024.10.29

Outline

- Theme for the meeting "CEM for EMC"
- Introductory part elaborate, compare and contrast
 - Experimental work (or lab work in EMC)
 - Theoretical work (or computational work by CEM)
- Describe two courses at Chalmers
 - SSY200 Computational electromagnetics
 - EEN230 Electromagnetic environment, health and compatibility
- How to sign up for courses at Chalmers

Some comparisons between computations and experiments

- Quotes (unknown origin, to me...)
 - No one believes the computational result except the person that performed the computations (Maybe the same applies to theory as well?)
 - Everyone believes in the experimental result except the person that performed the experiment
- Some questions
 - What is right and wrong?
 - How do we know if it is right or wrong?
 - What to do when in doubt?

Computational (and theoretical) work

- Every underlying circumstance/quantity in the computation can be controlled in detail
- Do the results agree with "reality"? ("reality" = experiments)
- The same result for different computations (e.g. performed different days)
- Easy to make parameter studies

4

 The model can be "compared with itself" to give relative results – absolute results are more difficult to get right

Experimental work

- Difficult or impossible to know and control all underlying circumstances/quantities involved the experiment
- The results agree with "reality"! (assume that the experiment is correctly conducted)
- Different results for "the same experiments"
 - Stochastic errors
 - Systematic errors (may drift wrt time)
- Difficult to make parameters studies for some parameters (and others very easy)

Workflow for computational work (applies also for theoretical work)

- Real-world problem/system/situation (often modified/simplified for experimental work)
- 2. Model the problem by physics and mathematics (involves simplifications)
 - Electric circuit non-linear behavior, temperature, ...
 - Maxwell's equations geometry, materials, ...
- 3. Calculate/compute the solution given the model
 - Analytical methods highly limited but very informative
 - Exact answer (for a rather small number of models)
 - Numerical methods (CEM) less limited but "only for one case"
 - Approximate answer (always...)

7

Computational electromagnetics

Course code: SSY200

About 15 participants per year

MSc-students (year 4 or 5 from many programs)

• PhD-students (not only Chalmers)

Industry

Given in study period 3 (= first half of the spring semester)

Examination: 4 hand-in assignments (one is optional) and oral exam (7,5 credits)

Introduction to CEM (from the course)

- Computers get more and more powerful but improved algorithms are equally important!
- Finite resources for computations
 - The computer has finite memory
 - The user has finite time (and energy/money/...)
- Usually, the user don't want to wait for the results more than one week
 - feedback from the computation is needed to be able to make iterations
 - the program may crash in particular for complicated computations
 - there may be "blunders" in terms of wrong input data, bugs or other problems

Introduction to CEM (from the course)

Finite resources (memory and time) impose limitations on the problems that can be solved

- Electromagnetic field model (with infinite number of degrees of freedom) must be limited to a finite number of degrees of freedom (use them well...)
- Implies approximate results the exact result can never be achieved
- The approximation can be improved by increasing the resolution
 - · Points per wavelength
 - Inclusion of geometrical details
 - Material variations

• etc

11

Finite-difference (FD) schemes

- Introduce grid points x_i (uniform in space typically)
- Assume that the field f(x) takes one value f_i at each grid point
 Unknown between grid points
- Approximate derivatives with "finite-difference stencils" in differential-equations (slope of straight line...) ⇒ numerical error
- Staircase approximation (can be mitigated by cut cells)

Finite-difference (FD) schemes

- Numerical error
 - Electromagnetic wave propagates at the wrong speed (= numerical dispersion)
- Applied to time as well the FDTD scheme
 ⇒ Explicit time-stepping (no matrices)
 ("Courant condition" limits time step)
- Resolution "rule of thumb" about 20 points per wavelength (small number of wavelengths)
- Double the frequency and keep the *absolute* phase error constant
 - Memory requirements increase by factor $2^{9/2} = 2$
 - Computational time increases by factor 2⁶ = 64

13

Finite Element Method (FEM)

- Divide the domain into finite elements
- Assume that the field is piecewise linear inside the finite elements
 - approximate ansatz *function*
 - numerical error (similar effects as for FDs)
- Derive weak form a compromise to make the differential equation fulfilled (as good as possible...)
- Body conforming (triangles in 2d and tetrahedrons in 3d)

Finite Element Method (FEM)

- Meshes of unstructured triangles or tetrahedra allow for
 - Complicated geometry
 - Space varying resolution and adaptive mesh refinement
- Sparse matrices
 - Direct solvers for 2d problems
 - Iterative solvers for 3d problems
- Time-domain methods
 - Work well with implicit time-stepping (no Courant condition)

Method of Moments (MoM)

- Integral equation instead of differential equation
 - · Sources (currents and charges) are the unknowns
 - Enforce boundary conditions for the electromagnetic field
 - Use the FEM to compute the sources
- Advantages
 - Good for problems with "small wires/surfaces with sources" and large volumes for the fields (free-space with infinite and homogeneous space)
 - Fast methods available (almost linear scaling with frequency)
- Drawbacks
 - Full matrices (=requires very much computer memory) for basic version
 - Difficult to evaluate the matrix elements (singularity from Green's function)

Electromagnetic environment, health and compatibility

Course code: EEN230

Estimated number of BSc-students per year: 50-60

- Biomedical Engineering, Year 3 (compulsory)
- Electrical Engineering, Year 3 (compulsory elective)
- Automation and Mechatronics Engineering, Year 3 (elective)

Given in study period 4 (= second half of the spring semester)

Examination: one project (1,5 credits) and written exam (6,0 credits)

Contents overview

- Define environment and sustainable development
 - particular focus on electrotechnical equipment and electromagnetic fields.
- The electromagnetic environment is described in terms of different perspectives
 - electromagnetic spectrum
 - categorization of the electrotechnical equipment/system
 - sources, victims and coupling paths for electromagnetic disturbances.
- Biological effects on humans given low-frequency magnetic fields, high-frequency electromagnetic fields and ionizing radiation.

THE GLOBAL GOALS

Blistered face after "facelift" based on radiofrequency treatment patented by a company – the patient suffered second-degree burns

https://www.thesun.co.uk/news/ 8919577/botched-facelift-blistersburned-inside-out/

Contents overview (cont.)

- Legal regulations and requirements in different contexts: international, EU, national and local.
 - Bettina Funk (Svensk Elstandard) gave a lecture on standardization
- Analysis, design and testing of electrotechnical equipment
 - both theory and experiment
- Possibility to participate in a study visit at a local hospital, institute or company.
- Project work.

DIRECTIVE 2014/30/EU OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 26 February 2014 on the harmonisation of the laws of the Member States relating to electromagnetic compatibility (recast)

Study visits

- RISE in Borås
 - Full anechoic chambers
 - Semi-anechoic chambers
 - Reverberation chambers (including VIRC)
- Volvo Cars Corporation
 - Semi-anechoic chambers
 - Outdoor test site under tent
- Sahlgrenska University Hospital
 - Test lab (no chambers)
 - Presentation with motivational challenges from a hospital environment

By Binarysequence - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=23428710

Pedagogical challenges and approaches

- Most students did not study electromagnetic field theory
- No good book given the broad range of topics
 - Slides that present the material in a summarized manner
 - Prerecorded video lectures on electromagnetic field theory (from the pandemic)
 - · Suggested reading list for in-depth studies
- Course material developed
 - Slides
 - Tutorial problems
 - Project
 - Table of formulas no derivations based on Maxwell's equations

Pedagogical approach and technical contents – overview

- Electromagnetic field theory
 - Review of vector analysis
 - Static phenomena based (mainly) on infinitely long line sources
 - Quasi-static phenomena based on the static cases
 - Electromagnetic plane waves
- Transmission line theory (continuation of "line sources" from EM theory)
 - Differential-mode and common-mode currents
 - Transmission lines with N+1 conductors (matrices L, C, R and G)
 - Special cases low-frequency situation and 2 conductors

2024-11-19

Pedagogical approach and technical contents – overview

- Filters and non-ideal component behavior
 - Review of Fourier analysis
 - Differential-mode and common-mode filters
 - Resistor, capacitor and inductor at (too) high frequencies
- Conducted emissions and susceptibility
 - · Crosstalk based on transmission line theory
 - LISN
- Antennas (mainly wires)
 - Electric and magnetic (elementary) dipoles
 - Radiation characterization
 - Half-wave dipole, array antennas, antenna factor and Friis transmission formula

Pedagogical approach and technical contents – overview

- Radiated emissions and susceptibility
 - Based on array antennas (two parallel wires) for emissions
 - · Similar model for susceptibility/immunity
- Measurements

Lectures supported by some experiments in front of the entire group of students in the lecture hall – no (physical) experiments conducted by the students themselves.

Course ends with a written exam.

How to sign up?

You apply via <u>universityadmissions.se</u> or <u>antagning.se</u> for the spring or autumn semester:

- Deadline in October 15 for spring semester (passed for spring semester 2025...)
- Deadline in April 15 for fall semester

Send an email to me at

rylander@chalmers.se

to get more information.

CHALMERS