A LUT
A University

LAND OFTHE CURIOUS

IEEE seminar 4.9.2024 – Hybrid Event at KTH Campus and on Zoom

Key Research Aspects of Green Hydrogen Production

Antti Kosonen, LUT email: antti.kosonen@lut.fi tel: +358 45 676 9878 twitter: @AnttiJKosonen

We already live in a hydrogen economy, what's the problem?

What is a hydrogen [economy?](https://www.lut.fi/en/articles/what-hydrogen-economy-and-how-does-it-reduce-carbon-dioxide-emissions)

The problem is energy based on combustion, because in our energy sources, hydrogen is bound to carbon. Hydrogen is not available as such.

Source: BP Statistical Review of World Energy Note: 'Other renewables' includes geothermal, biomass and waste energy.

Energy consumption by source, World

The goal is net zero emissions by 2050

GLOBAL AVERAGE SURFACE TEMPERATURE

We already live in a hydrogen e.

 Ω

Agriculture and land use change (15%)

Total: 48.9 GtCO₂e

Source: Greenhouse gas emissions on Climate Watch. Available at: https://www.climatewatchdata.org

WORLD RESOURCES INSTITUT

1994-2023

Change in temperature (°F/decade) -1

NOAA Climate.gov
Data: NCEI

European energy system based on electricity

Electricity production 2,641 TWh (40 % RE) in 2022

Europe - RES-2040 2050

Solar PV fixed tilted: 4583.6 Solar PV lixed thred: 4000,6

- **Zero CO² emission low-cost energy system is based on electricity (need about 12,000 TWh)**
- **Core characteristic of energy in future: Power-to-X Economy**
	- **Primary energy supply from renewable electricity: mainly solar and wind power**
	- **Direct electrification wherever possible: electric vehicles, heat pumps, desalination, etc.**
	- **Indirect electrification for e-fuels (marine, aviation), e-chemicals, e-steel; power-to-hydrogen-to-X**

University

POWER-TO-X

Industrial scaleup of green hydrogen – What might happen?

Main commercial water electrolyzer technologies

- Alkaline water electrolyzer (AWE)
	- Mature technology, but designed to operate at nominal point
	- Ready to scale up now \rightarrow technology will be improved through the industry
- **>> Proton exchange membrane water electrolyzer** (PEMWE)
	- No liquid electrolyte, wide operation range
	- Industrial scale, but noble catalyst materials (iridium, platinum) restrict scaling up and decreasing the cost
- **▶ Solid oxide water electrolyzer (SOWE)**
	- High operating temperature (700−1000°C) and efficiency at nominal point
	- Not industrial scale, problems to operate in partial loads and degradation of materials

Fig. Annual electrolyzer manufacturing capacity. [BloombergNEF](https://about.bnef.com/blog/a-breakneck-growth-pivot-nears-for-green-hydrogen/)

Main commercial water electrolyzer technologies

What have we learnt from solar power markets?

How to produce cheap green hydrogen?

Note: 'Today' captures best and average conditions. 'Average' signifies an investment of USD 770/kilowatt (kW), efficiency of 65% (lower heating value - LHV), an electricity price of USD 53/MWh, full load hours of 3200 (onshore wind), and a weighted average cost of capital (WACC) of 10% (relatively high risk). 'Best' signifies investment of USD 130/kW, efficiency of 76% (LHV), electricity price of USD 20/MWh, full load hours of 4200 (onshore wind), and a WACC of 6% (similar to renewable electricity today).

[IRENA \(2020\), Green hydrogen cost](https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf) [reduction: Scaling up electrolysers](https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf) to [meet the 1.5 °C climate goal,](https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf) International Renewable Energy Agency, Abu Dhabi.

11

University

Green hydrogen production based on wind and solar electricity

1000

900

800

700

Effect of intermittency of electricity supply Cost composition of alkaline water electrolysis

5 MW plant

Electrolyzer plant size matters. 100 MW plant has significantly

lower specific investment cost than

 \blacksquare Engineering

Housing

Electricity price (20 USD/MWh)

Blue hydrogen cost range

Figure 3-6: Specific costs of 5 MW and 100 MW next generation AEL systems (including mechanical compressors) for the design scenarios 2020 and 2030

Source: M. Holst, S. Aschbrenner, T. Smolinka, C. Voglstätter, G. Grimm, [Cost forecast for low-temperature electrolysis –](https://www.ise.fraunhofer.de/en/press-media/press-releases/2022/towards-a-gw-industry-fraunhofer-ise-provides-a-deep-in-cost-analysis-for-water-electrolysis-systems.html) Technology driven bottom-

12

12 [up prognosis for PEM and alkaline water electrolysis systems](https://www.ise.fraunhofer.de/en/press-media/press-releases/2022/towards-a-gw-industry-fraunhofer-ise-provides-a-deep-in-cost-analysis-for-water-electrolysis-systems.html), Fraunhofer ISE, Oct. 2021.

LUT
University

Role of power electronics?

Power quality effect on AWE performance (1/2)

 2.5

 2.3

 2.2

 $\overline{2}$

1.6

 Ω

 $\begin{array}{c}\n\bigvee_{1\leq i\leq n} \mathbb{Z}_{2} \\
\bigvee_{1\leq i\leq n} \mathbb{Z$

- Järvinen et al: "Applicability of linear models in modeling dynamic behavior of alkaline water electrolyzer stack", [Renewable Energy,](https://doi.org/10.1016/j.renene.2024.121089) [2024](https://doi.org/10.1016/j.renene.2024.121089):
	- 3 kW AWE stack was used to conduct performance measurements under dynamic current supply
		- Ripple amplitude clearly increased the losses of the electrolyzer stack
		- At high frequencies (>300 Hz) the electrolyzer behaves as linear impedance load
	- Applicability of linear models was studied in the case of dynamic operation of the AWE
		- Tangent based linear approximation were found to give satisfactory results when the ripple frequency is high (>600 Hz)

Power quality effect on AWE performance (2/2)

- Järvinen et al. "Experimental Study of Alkaline Water Electrolyzer Performance and Frequency Behavior Under High Frequency Dynamic Operation", [International journal of hydrogen energy, 2024](https://doi.org/10.1016/j.ijhydene.2024.04.093)
	- Clear increase in power usage seen when ripple amplitude is increased
	- Ripple frequency counteracts the losses coming from ripple
		- Losses are reduced up to 32% when increasing frequency from 10 Hz to 1 kHz and 20% when moving from 300 Hz to 1 kHz (0.2 A cm-2 bias)
		- Frequency has high impact when operating at partial loads
	- Linearization frequency determined for two different electrode sets
		- Electrolyzer behaviour linearizes after 68 Hz when using nickel based electrodes
		- With more advanced electrode materials the linearization occurs after 5 Hz

Industrial systems

See: [Comparison of different](https://doi.org/10.1016/j.jpowsour.2020.229443) [power supply technologies](https://doi.org/10.1016/j.jpowsour.2020.229443)

- With an industrial electrolyzer the current always contains ripple from power electronics $_{\text{(source)}} \rightarrow$ $_{\text{(source)}} \rightarrow$ $_{\text{(source)}} \rightarrow$ Voltage response also contains ripple
- **▶ Ripple is relatively highest in the partial loading**

16

Cost structure of alkaline water electrolyzer

LUT
Cuniversity

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf

Potential cost savings in AWE

Figure 21. System components for a 1-MW alkaline electrolyser classified based on contribution to total system cost and potential for cost reduction.

Voltage level elevation Same power electronics can be used as in solar power. Electrolysis stack voltage should be increased from 300 V to 1500 V!

Potential for cost reduction

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf

AWE is mature technology – Nothing to study?

From electricity to chemical energy – Hydrogen production by alkaline water electrolyzer (AWE)

Summary:

- Located in Kokkola, Finland
- Power-to-Hydrogen: 1800 Nm³/h (H₂)
- 3x3 MW pressurized alkaline water electrolyzers, 3x600 Nm $^{\rm 3/h}$, 16 bar (H $_{\rm 2})$
- The main use of H_2 plant is at nearby Cobalt plant, hydrogen delivery by a pipeline
- The rest of $H₂$ compressed to 200–300 bar and stored in bottles for delivery with trucks

G. Sakas, A. Ibáñez-Rioja, V. Ruuskanen, A. Kosonen, J. Ahola, O. Bergmann, Dynamic energy and mass balance model for an industrial alkaline water electrolyzer plant process, Int. J. Hydrogen Energy 47 (7) (2022) 4328–4345, <https://doi.org/10.1016/j.ijhydene.2021.11.126>

Fig. 3x3 MW alkaline water electrolyzer (AWE).

Alkaline water electrolyzer

[\[Source\]](https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf) [\[Source\]](https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/cost-forecast-for-low-temperature-electrolysis.pdf)

Shunt currents

Fluid channels present a parallel path for current, bypassing the electrochemical reaction

> \rightarrow Total supplied current = effective cell current + shunt current

Anode: $4OH \leftrightarrow 2H_2O + O_2 + 4e^-$ Cathode: $4H_2O+4e^- \leftrightarrow 2H_2+4OH^-$

Renewable electricity

 \rightarrow Renewable electricity production has intermittent nature \rightarrow Dynamics is required **>>** Most of the hydrogen will be produced under partial loads

LUT
University

Control range because of impurities!

Pressurization

EX There are differences in the designs and parameters (stack length, pressure, etc.)

Two commercial stacks Efficiencies in detail

Elevated voltage and temperature levels

- **→** Voltage level increase is related to the stack design
	- Cost decrease in power electronics
- **EXECUTE:** Temperature level increase is mainly related to the separator diaphragm material
	- Higher voltage efficiency
	- Higher current densities possible \rightarrow less cell area required to produce same amount of hydrogen
	- Higher value of waste heat

Fig. Shunt currents at partial-load operation for different stack lengths.

Fig. Example of cell potential as a function of temperature. 25

Dimensioning green H² production plants

GREEN HYDROGEN PRODUCTION PLANT LEVEL

- Simulation and optimization of a complete green hydrogen production system
	- Minimizing LCOH with optimal dimensioning and control of electrolyzer, battery, wind and solar, storage, and compression, based on certain H2 demand

ELECTROLYZER WASTE HEAT RECOVERY

- ❖ Meriläinen et al: "Techno-economic evaluation of waste heat recovery from an off-grid alkaline water electrolyzer plant and its application in a district heating network in Finland", [Energy, 2024](https://doi.org/10.1016/j.energy.2024.132181):
	- Considerable amounts of electrolysis-based waste heat will be available in the future
	- Cost-optimization of component capacities is performed for different DH energy demand coverage rate requirements
		- 1. Maximization of the DH demand coverage rate without the PTES and the electric boiler
		- 2. 50–55% DH demand coverage
		- 3. 75–80% DH demand coverage
		- 4. 100% DH demand coverage
	- \rightarrow In all scenarios, at least 95% of the waste heat generated must be recovered
	- **EXECUTE:** Measured district heat demand data from a mediumsized city in Finland was used

Dimensioning of the waste heat recovery system. The manufacture of AWE plant dimensioning.

System operation in 5-min resolution **Levelized cost of heat** System operation in 5-min resolution

& LUT
University