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We already live in a hydrogen economy, what's the
problem?

Energy consumption by source, World

Primary energy consumption is measured in terawatt-hours (TWh). Here an inefficiency factor (the 'substitution'
method) has been applied for fossil fuels, meaning the shares by each energy source give a better approximation
of final energy consumption.
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Source: BP Statistical Review of World Energy OurWorldInData.org/energy ¢ CC BY
Note: 'Other renewables' includes geothermal, biomass and waste energy.



https://www.lut.fi/en/articles/what-hydrogen-economy-and-how-does-it-reduce-carbon-dioxide-emissions
https://www.lut.fi/en/articles/what-hydrogen-economy-and-how-does-it-reduce-carbon-dioxide-emissions
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GLOBAL AVERAGE SURFACE TEMPERATURE
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European-energy system'based on electricity & e

= Zero CO, emission low-cost energy system is based on electricity (need about 12,000 TWh)
= Core characteristic of energy in future: Power-to-X Economy

= Primary energy supply from renewable electricity: mainly solar and wind power
= Direct electrification wherever possible: electric vehicles, heat pumps, desalination, etc.
P e 20402050 = Indirect electrification for e-fuels (marine, aviation), e-chemicals, e-steel; power-to-hydrogen-to-X
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https://www.greens-efa.eu/en/article/document/accelerating-the-european-renewable-energy-transition
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Industrial scaleup of green hydrogen —
What might happen?
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Main commercial water electrolyzer technologies

»» Alkaline water electrolyzer (AWE)

 Mature technology, but designed to operate at nominal
pOInt 2022 2023

Sungrow, 0.1 \ NEL, 0.1 Sungrow, 0.1 - NEL, 0.1

 Ready to scale up now - technology will be improved sy A | FO e TR | poe e
through the industry |

»» Proton exchange membrane water electrolyzer
(PEMWE)

* No liquid electrolyte, wide operation range
 Industrial scale, but noble catalyst materials (iridium,

/

\ [Longi, 2.5

ummin |
16 John Cockerill;
ITM Power, 2.5 -

Total by
2023:

platinum) restrict scaling up and decreasing the cost
»» Solid oxide water electrolyzer (SOWE) st ) TS anonns Sy o5, /| 1\ s oz
» High operating temperature (700-1000°C) and Sl g P
EﬁICIency at nomlnal pOInt Source: Company filings, industry sources, BloombergNEF. Note: The values refer to year-end capacities.

- Not industrial scale problems to operate in partial loads Fig. Annual electrolyzer manufacturing capacity. BloombergNEF
and degradation of materials


https://about.bnef.com/blog/a-breakneck-growth-pivot-nears-for-green-hydrogen/
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»» Alkaline water electrolyzer (AWE)

 Mature technology, but designed to operate at nominal
point

* Ready to scale up now - technology will be improved
through the industry

»» Proton exchange membrane water electrolyzer
(PEMWE)

* No liquid electrolyte, wide operation range

* Industrial scale, but noble catalyst materials (iridium,
platinum) restrict scaling up and decreasing the cost

»» Solid oxide water electrolyzer (SOWE)

* High operating temperature (700-1000°C) and
efficiency at nominal point

* Not industrial scale, problems to operate in partial Ioads
and in degradation

= Most of the improvements are made
elsewhere than in electrochemistry.
Technology is scaling up now. Key
technology in research!

= How much to invest in research?
High risk that these are not winning
technologies in industry. To be used in
special applications.
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What have we learnt from solar power markets?
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https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/Photovoltaics-Report.pdf

LUT

How to produce cheap green hyerogen?

Electrolyser cost
1) How to get electrolyser cost
down by 80%?
2) How to enable highly dynamic

operation? Electricity cost
c We already see solar PPA’s
& at 20 €/ MWh. Still much
5 potential in techology left in
a . solar and wind power. This
2 will happen. Bl
8 "
5 3 Energy efficiency
g 1) Important, but not
= a dominant factor.
c 2 2) Partial loading.
2
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Note: ‘Today’ captures best and average conditions. ‘Average’ signifies an investment of USD 770/kilowatt (kW), efficiency
of 65% (lower heating value - LHV), an electricity price of USD 53/MWh, full load hours of 3200 (onshore wind), and a
weighted average cost of capital (WACC) of 10% (relatively high risk). ‘Best’ signifies investment of USD 130/kW, efficiency

of 76% (LHV), electricity price of USD 20/MWh, full load hours of 4200 (onshore wind), and a WACC of 6% (similar to
renewable electricity today).
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IRENA (2020), Green hydrogen cost
reduction: Scaling up electrolysers to
meet the 1.5 °C climate goal,
International Renewable Energy
Agency, Abu Dhabi.
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https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf
https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf

G

Hyrogen production cost (USD/kg)

reen hydrogen production based on windrand salar electricity Universiy

Effect of intermittency of electricity supply Cost composition of alkaline water electrolysis
. ™~
A Electrolyzer plant size matters.
: Solar and 000 100 MW plant has significantly
wind PEMWE? . lower specific investment cost than
- electricity 5 MW plant
800 —
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Electrolyser system cost (USD 200/kW) + fixed costs
Electricity price (20 USD/MWHh) Figure 3-6: Specific costs of 5 MW and 100 MW next generation AEL systems (including mechanical

compressors) for the design scenarios 2020 and 2030

Blue hydrogen cost range

Source: M. Holst, S. Aschbrenner, T. Smolinka, C. Voglstatter, G. Grimm, Cost forecast for low-temperature electrolysis — Technology driven bottom-
. . . 12
up prognosis for PEM and alkaline water electrolysis systems, Fraunhofer ISE, Oct. 2021.



https://www.ise.fraunhofer.de/en/press-media/press-releases/2022/towards-a-gw-industry-fraunhofer-ise-provides-a-deep-in-cost-analysis-for-water-electrolysis-systems.html
https://www.ise.fraunhofer.de/en/press-media/press-releases/2022/towards-a-gw-industry-fraunhofer-ise-provides-a-deep-in-cost-analysis-for-water-electrolysis-systems.html
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Role of power electronics?
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Power quality effect on AWE performance (1/2)

» Jarvinen et al: “Applicability of linear models ol [o 2T e
iIn modeling dynamic behavior of alkaline | 4
water electrolyzer stack”, Renewable Enerqy, Z wof e
2024 2 300 Hz v

' x 7
» 3 kW AWE stack was used to conduct _ - p
performance measurements under dynamic 2 7
current supply o
— Ripple amplitude clearly increased the losses e om0 oo o
of the electrolyzer stack - ) ipple amplitude (4 cr ™)
— At high frequencies (>300 Hz) the L L e
electrolyzer behaves as linear impedance P B>
load

 Applicability of linear models was studied in
the case of dynamic operation of the AWE

Voltage (V)

. . . 19F ¥
— Tangent based linear approximation were 10 Hz 1000 Hz
found to give satisfactory results when the N’ o] i
. . . " H— UI B 3 *— Ul
ripple frequency is high (>600 Hz) B , | , , y , . . . .
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

" 2 " » 3
Current density (A cm™) Current density (A cm™)
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https://doi.org/10.1016/j.renene.2024.121089
https://doi.org/10.1016/j.renene.2024.121089
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Power quality effect on AWE performance (2/2)

» Jarvinen et al. "Experimental Study of Alkaline Water /|5 % P i J
Electrolyzer Performance and Frequency Behavior at 1000 R 1000 e /
Under High Frequency Dynamic Operation”, < s} S
International journal of hydrogen energy, 2024 ¢, Al
- Clear increase in power usage seen when ripple 51 3

amplitude is increased = =2l
- Ripple frequency counteracts the losses coming from o o}
ripple | | =% | =
— Losses are reduced up to 32% when increasing frequency 0 S N o0 o 100
from 10 Hz to 1 kHz and 20% when moving from 300 Hz to pple amplimde (%) pple amplitude (%)
1 kHz (0.2 A cm bias) (a) 0.2Acm 2 DC bias (b) 0.6 A cm 2 DC bias
— Frequency has high impact when operating at partial loads 07 | s Or , —
. . . . . 5 1 chl_ o 1 I Acil 4
+ Linearization frequency determined for two different S’ | e . T %
electrode sets g o . penn | BT : e
3 1 2 1
— Electrolyzer behaviour linearizes after 68 Hz when using Z ” ¥ %QS' .
nickel based electrodes 5 20 T 5 20 T
= =3 \ Lo
— With more advanced electrode materials the linearization SR T kel gl .
occurs after 5 Hz 2w : Nicke 2l : Advanced
gl 1 electrodes 3 .| o electrodes
0 ~".‘.‘ ‘ : ---,_l, ~— -~ = 0 " \v: D -‘- N = I\.. e l : ,
10-! 10° 10* 10° 10° 104 10° 10t 10° }Jlﬂl 10° 103 104 10°
Frequency (Hz) Frequency (Hz)

15


https://doi.org/10.1016/j.ijhydene.2024.04.093

Industrial systems

ot
University

See: Comparison of different
power supply technologies

»» With an industrial electrolyzer the current always contains ripple from power
electronics source) =2 Voltage response also contains ripple

» Ripple is relatively highest in the partial loading

100% load, 6-pulse thyristor rectifier
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https://doi.org/10.3390/electronics9060912
https://doi.org/10.1016/j.jpowsour.2020.229443
https://doi.org/10.1016/j.jpowsour.2020.229443
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Power electronics
Electrical current defines the cost

Alkaline Electrolyser
% cost breakdown

4%
Stack %
1%

Balance of Plant

129, Dlaphragm/ 10%
Electrode 57%
package
® Manufacturing @ Porous Transport Layer (PTLs) @® Balance of Plant ® Power Supply
Diaphragm @ Structural layers ® Stack components ® Deionised Water Circulation
Nickel based anodes ® Small parts (sealing, frames) @ Hydrogen Processing
Nickel based cathodes Bipolar Plates (BPs) Cooling

Stack assembly and end plates

Diaphragm/ Electrode Package 17

https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA Green hydrogen cost 2020.pdf



https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf
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Voltage level elevation

Potential cost savings in AWE Same power electronics can be

used as in solar power.

Electrolysis stack voltage should be
Figure 21. System components for a 1-MW alkaline electrolyser classified based on increased from 300 V to 1500 V!
contribution to total system cost and potential for cost reduction.
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w
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L
e 20%
X ®-Manufacturing
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©
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s 10% o- Hydrogen Processing
kS
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e
L ; Cooling
Bipolar Plates (BPs)
@ Porous Transport Layer !
o Small parts (PTLS) Nickel based anodes
0% (sealing, frames) Nickel based cathodes
Low Medium High

Potential for cost reduction
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https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA Green hydrogen cost 2020.pdf



https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf

AWE iIs mature technology — Nothing to study?
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From electricity to chemical energy — Hydrogen
production by alkaline water electrolyzer (AWE)

Summary:
* Located in Kokkola, Finland
« Power-to-Hydrogen: 1800 Nm3/h (H.,)

« 3x3 MW pressurized alkaline water electrolyzers,
3x600 Nm?3/h, 16 bar (H,)

* The main use of H, plant is at nearby Cobalt plant,
hydrogen delivery by a pipeline

* The rest of H, compressed to 200-300 bar and
stored in bottles for delivery with trucks

G. Sakas, A. Ibanez-Rioja, V. Ruuskanen, A. Kosonen, J.
Ahola, O. Bergmann, Dynamic energy and mass balance
model for an industrial alkaline water electrolyzer plant
process, Int. J. Hydrogen Energy 47 (7) (2022) 4328—4345,
https://doi.org/10.1016/}.ijhydene.2021.11.126

Fig. 3x3 MW alkaline water electrolyzer (AWE). 20


https://doi.org/10.1016/j.ijhydene.2021.11.126

-—

\/

Alkalinewaterelectrolyzery

Cell level Stack level
02 DC generator H2 LI T 0:/¥on By, Gas/Water
41 TF\ e mTow ] e separator
02 H2 (=} (¥) oo T (+)
=) = €| =
= ]
2H,0 40H A NAE AR
€| E £ | E €| E
S S| nesipolarcells || B
2|8 g. g n ipolarcells  FE=Sf |- F
Anode Cathode s|E s E in sefies 5| E _g
SH ) e | S till Endplate SHL
= |FS 121198 = |88
A E 5| 2
@ @ o o< Q
40H 8 8 4H,0
E E ..................
@ @
Electrolyte Solution (KOH)
~ /N S, S I S 1 NGO From KOH
Anode: 40H < 2H.0+0_+4¢e B NG Management
? 2 View into a single L 1 1 ]
Cathode: 4H20+4e_ > 2H2+4OH_ Bipolar Cell Bipolar cell n=2 n=3 Separator
n=1 and Sealing
[Source] [Source]

21


https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2020/Dec/IRENA_Green_hydrogen_cost_2020.pdf
https://www.ise.fraunhofer.de/content/dam/ise/de/documents/publications/studies/cost-forecast-for-low-temperature-electrolysis.pdf
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Renewable electricity

»» Renewable electricity production has intermittent nature - Dynamics is required
»» Most of the hydrogen will be produced under partial loads

2500 -
[ IWind
1 T | T T I I I T T T T 2250 - [ ISolar PV 7
g — Solar PV —— Wind| - Wind + Solar PV
g 2000 .
208+ i
< 1750 |
S
Z o6k 1 S 1s00f
h -; - - .
= S 10l Division of renewable
ks ° electricity
o
o 041 i Q1000
% o |
< 750 |
%
o
'z
o

: | v
1 sool

Month 0 05 1 L5 2 25 3 35 4 45 5 55 6 65
Operation point
23
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Control range because of impurities!

Pressurization

»» There are differences in the designs and parameters (stack length, pressure, etc.)

Two commercial stacks Efficiencies in detail
%0 Specific energy consumption 100 Efficiencies
e Atm.
751 =16 bar| |
90 .
/'\N 70 [ . n
¥ Pressurized & [T
2 65t 3 807 1
< 3‘ Atm., current
B % 16 bar, current
< 60 S S | Atm., voltage (HHV) |
5 E{i 16 bar, voltage (HHV)
N o550 | === Atm., total (HHV)
_ === 16 bar, total (HHV)
“ Non-pressurized 60
45 | | | | | | | 50 | | | 1 | |
20 30 40 50 60 70 80 90 100 20 30 40 50 60 70 80 90 100
Current (% of nom.) Current (% of nom.)

24
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Elevated voltage and temperature levels

»» Voltage level increase is related to the stack s of
design M [ 1 et
- Cost decrease in power electronics § |
»» Temperature level increase is mainly related to *
the separator diaphragm material of T
- Higher voltage efficiency T e, e,
- Higher current densities possible = less cell area "¢ " eurens & pariarioad operation for diferent stack fengins.
required to produce same amount of hydrogen M Thl:/ |
+ Higher value of waste heat e _____________ ____________ ____________ _____________
e o
e w

Fig. Example of cell potential as a function of temperature. 25



Dimensioning green H, production plants



GREEN HYDROGEN PRODUCTION PLANTA-EVEL &+ Uomersiy

»» Simulation and optimization of a complete green
hydrogen production system

*  Minimizing LCOH with optimal dimensioning and
control of electrolyzer, battery, wind and solar, storage,
and compression, based on certain H2 demand

Solar PV power data Wind power data
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EL ECTROLYZER WASTE HEAT RECOVERY

Optimization
variable
’:’ Merllalnen et a.l ”TeChnO'eCOnOmIC evaluatlon Of . Hydrogen 5 Cost-optimization of the component capacities E
waste heat recovery from an off-grid alkaline water — Heat | it thermal Blectric boiler (< |
electrolyzer plant and its application in a district T e | |
heating network in Finland”, Energy, 2024:
A | istri | Levelized
i oo Scaling rate Off-grid : Heat pump Dilsctsltm — co&vgfli%at
»» Considerable amounts of electrolysis-based waste AWE plant [ for storage gleat , (AW
heat will be available in the future | . !
»» Cost-optimization of component capacities is FV— 1 — l
. itiona ! eat pump |
performed for different DH energy demand coverage electricity ; for direct heat :
. demand I consumption |
rate requirements 1 I
1. Maximization of the DH demand coverage rate
without the PTES and the electric boiler
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Dimensioning of the waste heat recovery system. AWE plant dimensioning.
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