Emission from Wireless Power Transfer of Electrical Vehicles

Sofia Bergström, Sara Linder, Kia Wiklundh and Eric Corrigan
Background

• New application within the wireless power transfer (WPT) technique
• Stationary inductive charging of vehicles, WPT-EV
 – Frequency band 79–90 kHz
 – Compared to wireless charging of other devices, such as mobile phones, significantly higher power
• Risk that the WPT-EV may cause electromagnetic interference in radio communication systems
 – Communication systems nearby in frequency
 – But also possible that harmonics and other emissions may occur at higher frequencies and impact systems
• Aim: to get information of the emission from a WPT-EV station to understand the potential risk these kinds of equipment may constitute to communication systems
Measurements

- 5–7 July 2022
-Measured outdoors on a installed WPT-EV system and a vehicle charging
- WPT-EV station
 - 43 kW
 - Charging frequency 83 kHz
 - Guiding frequency 85 kHz
Measurements

• Frequency band 9 kHz to 1 GHz
 – 3 and 10 m
 – different positions

• Measurement cases
 – **Background** – WPT-EV system without power
 – WPT-EV system on, but no charging
 – Vehicle (not charging)
 – Vehicle charging
Measurement setup

- Measuring receiver in time domain mode (FFT) – R&S ESRP
- Measure Peak Max hold and spectrogram
- Antennas
 - Active loop antenna from R&S of type HFH2-Z2E, powered by a IN600 Bias Unit from R&S
 - Antenna orientations 1 & 2
 - Biconical antenna (30-200 MHz)
 - Horizontal and vertical polarisation
 - Log-periodic antenna (200 MHz-1 GHz)
 - Vertical polarisation
- Measured results are compensated for antenna factors, attenuation/gains etc.

Frequency range and Bandwidth

<table>
<thead>
<tr>
<th>Frequency range</th>
<th>Bandwidth</th>
</tr>
</thead>
<tbody>
<tr>
<td>9-150 kHz</td>
<td>300 Hz</td>
</tr>
<tr>
<td>150 kHz – 30 MHz</td>
<td>10 kHz</td>
</tr>
<tr>
<td>30 MHz – 1 GHz</td>
<td>100 kHz</td>
</tr>
</tbody>
</table>
Results: 9-150 kHz

- Background measured at site with WPT-EV system without power
- The charging frequency, identified as 83.025 kHz, is clearly visible
- Some differences in levels between the measured results at different positions and antenna orientations
Results: 9-150 kHz

- Similar but lower values at 10 m
- Differs between measurement positions and antenna orientations
Results: 9-150 kHz

• Spectrogram, (10 sweeps and a measurement time for each sub-band of 100 ms)
 – vehicle charging at 3 meter with antenna orientation 1 and direction 1

• Charging frequency is transmitted continuously during the charging and consists of a sine signal
Results: level variations in different directions

- Not clear which measurement direction that attains the highest levels
- Many reasons for why level variations at different locations are difficult to analyse
 - Outdoor measurements
 - buildings and structures occur within distances of the same order as the measurement distance => multipath propagation and subsequent interference cancellation/contribution
 - Measurement object itself is anisotropic - two large coils possibly coaxially misaligned, vehicle contains auxiliary electronics, cables, a motor, and is inherently radially asymmetric
 - Measurements partly in the near field
 - $\lambda/2\pi$, the near field extends to about 10 m for 5 MHz
 - Lower frequencies: made in near field => coupling between the measured object and the measurement equipment
Results: 150 kHz-30 MHz

- 3 m distance
- Emissions are clearly visible above the background
- Narrowband signals
- Difference between measurements/positions, but no clear trend
Results: 150 kHz-30 MHz

• For frequencies above 12 MHz: levels and behaviours very similar to the 3 m results
Results: 150 kHz-30 MHz

- Narrowband signals
- Enlarged view of 1–6 MHz:
 - Frequency distance:
 - between high peaks is 166 kHz
 - between a high peak and its smaller neighbour peak 83 kHz (charging frequency)
Results: 150 kHz-30 MHz

- Clear that the levels are constantly transmitted over 10 sweeps
Results: 30-200 MHz

- Filter for FM radio
- Noisy environment
Results: 200 MHz-1 GHz

• Many transmitters in the band
Conclusions

- Investigation of the emitted electromagnetic field from an outdoor situated WPT-EV system between 9 kHz -1 GHz
- Charging frequency of 83.025 kHz
 - between 64 and 81 dBμA/m at 3 meter
 - between 58 and 65 dBμA/m at 10 meter
- HF band
 - emissions clearly visible above background, for 1-12 MHz, constant in magnitude
 - evident comb spectra originated from the charging frequency
- 30 MHz-1 GHz
 - Noisy environment -> hard to distinguish emissions from vehicle charging