

Wearable systems for continuous monitoring of physiological parameters

Emiliano Schena

- Motivation for designing wearable technologies
- Rearables attributes
- Use Cases requirements and solutions
- **Future Directions**

Scenario

Top Global Causes of Deaths

Share of all global deaths in 2017, by most common causes

Source: World Economic Forum / Institute for Health Metrics and Evaluation

Top Chronic Conditions in Adults 65+

Source: Centers for Medicare & Medicaid Services, Chronic Conditions Prevalence State/County Table: All Fee-for Service Beneficiaries, 2015

Emiliano Schena Unit of Measurements and Biomedical Instrumentation

Università Campus Bio-Medico di Roma

Source: World Economic Forum / Institute for Health Metrics and Evaluation

Wearables are an opportunity

- Population Health
- Digital Biomarkers/ Signs
 - Explain influence –
 predict health outcomes
 - Gain fundamental insight into disease origins
- Personalized Health

Emiliano Schena

Università Campus Bio-Medico di Roma

Università Campus Bio-Medico di Roma

Data connectivity

Standard for health data

Problem Statement

- mHealth data encompasses personal health data collected from sensors and mobile applications
- Mobile health data and metadata standards are needed
 - Each device maker / app developer decides how to represent data and metadata
 - Data are poorly specified
- Standardizing mHealth data and metadata will
 - o Make data aggregation across multiple sources easier and more accurate
 - Reduce costs of using mHealth data to make biomedical discoveries, improve health, manage disease

/ho should participate:

- Wearable device makers
- Medical device makers
 Health data aggregators
- Health information technology systems managers
- Health information infrastructure providers
- Mobile health app developers
 Biomedical researchers
- Biomedical re
 Clinicians
- Data scientists
- Government

How to Participate: If you wish to participate in the

If you wish to participate in the IEEE P1752TM Working Group, please go to the website address shown below and scroll to the bottom of the page for instructions.

http://sites.ieee.org/sagroups-1752/

Emiliano Schena

Targeted biomedical use cases

COSMED

RDS lab

a DSRIab Group Company

nesc id

- Remote respiratory monitoring
- Breathing abnormalities
- Athletes performance evaluation
- Accurate cardiac monitoring without electrodes
- Adherence to the rehabilitation program
- Occupational health and Safety

Use Case 1: Remote respiratory monitoring

There is an ever-growing demand for measuring respiratory variables during a variety of applications.

- **RESPIRATORY RATE**
- predictor of cardiac arrest
- prognostic marker for risk assessment after acute myocardial infarction
- early detection of the risk of the occurrence of dangerous conditions such as *sleep apnea, respiratory depression* in postsurgical patients

RESPIRATORY RATE is <u>overlooked</u> and <u>under-recorded</u>

¹ and a Vessel power and socionary memoryanic Department of Angelering, Societaria Department Areas, Rises, Bill, "Opportunity of Movement, Fernat and Health Socious, University of Hyres Very And Reproved: memoryanic and a second a patient association, Social Ages, association commerciant.

Remote Respiratory Monitoring in the Time of COVID-19

Emiliano Schena

Smart t-shirt proposition

 \rightarrow \rightarrow

 \rightarrow

 \rightarrow

Form factor Sensors Sampling Real-time

- smart t-shirt embdedding sensors and electronics
- strain sensors at the level of the torso
- continous sampling (at least 30 Hz)
- robust/low power communication

Strain Sensors

Fiber Optics (Fiber Bragg Grating)

Conductive (resistive sensors)

Smart t-shirt – B-by-B analysis

Use Case 2: Breathing abnormalities

Normal breathing involves synchronized motion of the upper rib cage, lower rib cage, and abdomen.

ABNORMAL BREATHING

- 📾 No optimal use of muscles
- Desynchronization between upper and lower compartments
- 📾 Musculoskeletal pain
- Need for respiratory rehabilitation

BREATHING BIOMECHANICS is difficult to assess with wearables

Smart garment proposition

\rightarrow
\rightarrow
\rightarrow
\rightarrow
\rightarrow

- smart t-shirt embedding sensors
- Extremely sensitive strain sensors at the level of the torso
- Extremely important
- Continuous sampling (at least 30 Hz)
- Robust communication

Strain Sensors

Fiber Optics (Fiber Bragg Grating)

Multi-s

Emiliano Schena

DI ROMA

Sensors positions

Analysis with cameras and markers

Analysis of chest wall strains

Design of sensors

Chest wall compartments

Hemiplegic patients

It has been suggested that hemiplegia caused by a lesion superior to the brain stem will impair diaphragmatic motion.

Emiliano Schena

Use Case 3: Athletes performance evaluation

Respiratory rate and heart rate are closely associated with perceived exertion in a variety of exercise conditions. They are strongly associated to the intensity of the sport gestures.

- Abrupt changes in work rate
- Physical and physiological attributes have received limited attention in predicting precision sports performance.

Different sports require dedicated hardware and adaptive algorithms for accurate measurement.

Emiliano Schena

Use Case 4: Continous cardiac monitoring

"Irregular and often rapid heart rate that can increase your risk of stroke, heart failure, and other heart-related complications... and episodes." [Mayo Clinic]

- Detection requires heartbeat detection and accurate R-R interval timing
- Post-diagnosis patients still need continuous monitoring
- The knowledge of the mechanical heart activity cannot be registered with ECG

HEART-INDUCED CHEST VIBRATIONS can be used to retrieve cardiac activities.

Emiliano Schena

STA CAMPUS STORED

Flexible sensors with 4 FBGs

Pilot trials on healthy volunteers

Emiliano Schena

Use Case 5: Adherence to the rehabilitation program

Home rehabilitation, a chimera or a real need to develop physiotherapy?

- Patients are not monitored continuously during rehabilitation exercises.
- Rehabilitation treatments at home are not patient-specific
- The patient is typically not very engaged at home

A multi-sensor platform may enhance the engadment, provide objective measurements and help physician to tailored the treatment.

6 FONDAZIONE GIOVAN BATTISTA BARONI

Use Case 6: Occupational health and Safety

- Workers are not monitored in occupationas settings
- Physiological and psychological stressors may lead to a loss of productivity and an increase of occupational injuries

CAMPUS

Sense Risc Project

Sviluppo di abiti intelligENti Sensorizzati per prevenzione e mitigazione di RIschi per la SiCurezza dei lavoratori

Emiliano Schena Unit of Measurements and Biomedical Instrumentation Università Campus Bio-Medico di Roma

AMPI

FBG

interrogator

1

Error <5%

Wearable systems for continuous monitoring of physiological parameters

Thanks for the attention

e.schena@unicampus.it