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Practical applications

Theoretical findings



Motivation

Known environments ..highly heterogeneous and unknown environments




Motivation

“How can | safely navigate an
unknown environment without
colliding with the surrounding?”
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Model Predictive Control / \
N

RH Algorithm i Z (i, wi) +f(zn)
i. At each time k: solve FHOCP. =0
ii. Apply to the system the first input in s.t.: 41 = f(%, Uz)

the optimal sequence x(k) Xex Ugy - oy UN_1
iii. Attime k 4+ 1: Get new measurements

and repeat the optimization. ' Uel

rN € Xf
Elements of the FHOCP ro = x(k)
. . - T T T
Current state Cost function [uo ooy Un_ 1]

= System model = Constraints T
= Terminal ingredients X = [xo 5 xN]

* Recursive feasibility

e Constraint satisfaction |
* (Stability) measurements (Dynamical} control input

(_System | k(a) = uj(a)




Model Predictive Control
Terminal ingredients duplicate the last input

/

/
Terminal equality constraint 2

_ _ X341 = Xa|k+1 = Xa
leO, Rf = Ugq Xf::ca | |

v’ Easy to satisfy when considering position-invariant systems
(like vehicles)

Recursive feasibility

If the FHOCP admits a solution at time k = 0, then a solution to the MPC '

optimization problem exists Vk > 0. e
discard the first input



MPC for constrained navigation
State constraints from local sensors

= The system evolves in a partially unknown environment and the surrounding is detected by onboard
sensors (LiDARs, cameras, antennas...).

= Safe set X'(k, x(k)) around the vehicle position (state)

4

time-varying state constraints x; € X (k,z(k)) Vi e NYY

time-varying constraints can lead to a loss of feasibility!




MPC for constrained navigation
Safety - Shifting state constraints

convex closed

X((k)) = w(k) @A I polvopicses X(x(k)) ={€ € R : H(§ — (k) < 1}

containing the origin

solution at time k !
time-invariant

X (z(k))

x(k)
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MPC for constrained navigation
Safety - Shifting state constraints

convex cIosed

-

Candidate solution attime k + 1 I
time-invariant
X(x(k+1))

x(k+1)

The candidate solution violates the constraint at time k + 1



MPC for constrained navigation
Safety - Shifting state constraints

v" The following implementation guarantee the recursive feasibility of the problem

H(x;y1 —x;) < h; suchthat Zh < h, Vi € N(J)V_l

solution at time k

o
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MPC for constrained navigation
Safety - Shifting state constraints

v" The following implementation guarantee the recursive feasibility of the problem

N
H(aﬁi+1 — CL‘z) < h; such that Zh- < h, Vi € N(J)V_l

Candidate solution attime k + 1

x(k+1))
@x(mn




MPC for constrained navigation

Safety - Unpredictable state constraints _ ,
time-variant

convex closed y - mmm T T T T <

X (k. 2(k)) = 2(k) GRS~ pOWOPICses (ko (k) = {€ € R : H(K)(€ — (k) < h(F)}

~ containing the origin

Due to the time-varying unpredictable nature of the constraints the recursive feasibilty cannot be
guaranteed.

[2] Saccani, D., & Fagiano, L. Autonomous uav navigation in an unknown environment via multi-trajectory model predictive control. In 2021 European Control Conference (ECC)



MPC for constrained navigation
Safety - Unpredictable state constraints

Sequence of feasible sets

S(k) ={X(,2(5)), Vi <k}, VE

z(k) € S(k),
if exists a j < k such that z(k) € X(j,x2(j)).

Modified problem

Instead of: z; € X (k,z(k))

Guarantee the existence of a feasible problem
at each time step, such that: z(k) € S(k)




MPC for constrained navigation
Safety - Modified receding horizon implementation

YES

Is it feasible?

NO  store X (k, z(k))

X (1K), (1)) » > %
Solve P(x(k), , L)
Ik + 1) = (k)

u(k) = ug

Stores the information about the last feasible problem

v Easy to prove the existence of an admissible control problem at each time step.

[2] Saccani, D., & Fagiano, L. Autonomous uav navigation in an unknown environment via multi-trajectory model predictive control. In 2021 European Control Conference (ECC)



MPC for constrained navigation
Exploitation

Safe set X(k) considered at each time step k
generally changes over time

» Relying only on local information can lead to a
conservative behaviour.

\ 4

Multi-trajectory MPC formulation

[3] Saccani, D., Cecchin, L., & Fagiano, L. (2022). Multitrajectory model predictive control for safe UAV navigation in an unknown environment. IEEE Transactions on Control Systems Technology



Multi-trajectory Model Predictive Control (mt-MPC)
Intuitive idea

* Predict two trajectories sharing the first waypoint Should | go or

should | stop?

One trajectory
carries out the main
task

The other one guarantees a
safe recovery maneuver




Multi-trajectory Model Predictive Control (mt-MPC)
Formulation

* Two different input sequences sharing the first control action ug = uf’)

T T T T
U° = [ug ,...,u?v_l]T U’ = [uf ,,,,7U§V_1]T

* Predict two different state trajectories sharing the first state X] = X3

T T T T
e e e e 171 S S\ __ S s 17T
Xe(z(k),U®) =[x ,...,25% | X5(z(k),Us) = [x5 ... 2% ]

Exploitation trajectory ignores Safe trajectory is used
the time-varying constraints, to satisfy time-varying
but it is considered in the cost constraints

N

1516121 1°(x5, u) X* e X(k), xy=1°
1=0



Multi-trajectory Model Predictive Control (mt-MPC)
Formulation

N
> Partially decouple constraint X (k) min [°(z7, ug) \

satisfaction (safety) from cost > v i=0
function minimization (exploitation) environment . es e,s _e,s
sensing 5.1 Lit1 = f(x’b » Uy )
o X%eX, U ecl
T
S S =8
— XeX(k), xy=7T
e _ S
Ug = Uy
o ro = x(k)
T T
O [J&S — [ue,s ue,s ]T

0 Yty U N—1
T T
e,s __ e,s e,s T
X% =[x ""’LUNJ

measurements (Dynamical]< control input
[ System | w() = uj ()
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mt-MPC for safe UAV navigation in an
unknown environment

* Navigate a commercial drone in an unknown
static environment

* Guarantee persistent obstacle avoidance
despite the various sources of uncertainty
(disturbances, model plant mismatch,...)

 Use only real time LiDAR measurements

[3] Saccani, D., Cecchin, L., & Fagiano, L. (2022). Multitrajectory model predictive control for safe UAV
navigation in an unknown environment. IEEE Transactions on Control Systems Technology

[4] Cecchin, L., Saccani, D., & Fagiano, L. (2021). G-beam: Graph-based exploration and mapping for
autonomous vehicles. In 2021 IEEE Conference on Control Technology and Applications (CCTA)




mt-MPC for safe UAV navigation in an unknown environment
Model - sensor - uncertainty

* The controlled drone behaviour, can be approximated
with a linear model with state x(k) = [p(k) v(k)]".

5
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mt-MPC for safe UAV navigation in an unknown environment
Model - sensor - uncertainty

* The controlled drone behaviour, can be approximated
with a linear model with state x(k) = [p(k) v(k)]".

 The LiDAR measurements are used to derive an under-
approximation of the free space with a convex polytope.

X(k,x(k)) ={§ € R" : H(k)(§ — x(k)) < h(k)}




mt-MPC for safe UAV navigation in an unknown environment
Model - sensor - uncertainty

* The controlled drone behaviour, can be approximated
with a linear model with state x(k) = [p(k) v(k)]".

 The LiDAR measurements are used to derive an under-
approximation of the free space with a convex polytope.

* Bounds on the prediction from data using a set membership
approach to enhance the robustness of the MPC scheme.

constraints tightening
e —

4 1 1 1 1 1 1
3040 3060 3080 3100 3120 3140 3160




mt-MPC for safe UAV navigation in an unknown environment
Experimental results

/ Mt-MPC \ / \

formulation

N
min Y 1 (a5, uf)
vetis 1
sibo @iy = J (@ i) min=x"Px + q"x
XS eXx, Uecll x 2
X e X(k), @ =2

s.t.:
Up = o Gx<h
o= Ax=0Db

Ues = [uS’ST, . m‘f(,‘fl]T
k X ot / \ Ib < x <ub /
/ / Onboard \

Computer
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mt-MPC for the navigation of multi-agent
systems under limited communication

* Swarm of vehicles

« Communication between spatially close
vehicles

* Guarantee persistent obstacle avoidance

[1] Saccani D., et al. Model predictive control for multi-agent systems under limited communication and time-varying network topology. In: 2023 IEEE Conference on Decision and Control (CDC).



mt-MPC for the navigation of multi-agent systems under limited communication
Model - communication - problem setup

 Swarm of M vehicles with nonlinear dynamics




mt-MPC for the navigation of multi-agent systems under limited communication
Model - communication - problem setup

________________
- ~<

 Swarm of M vehicles with nonlinear dynamics

« Communication device | e
» Spatially close vehicles can communicate \ / o
Ipi(k) = p; (R)] < r
w o Tod




mt-MPC for the navigation of multi-agent systems under limited communication

Model - communication - problem setup

Swarm of M vehicles with nonlinear dynamics

Communication device

» Spatially close vehicles can communicate
lpi(k) —p;i (k)| <
> Define a shifting safe set X;(k) such that

Xi(k) N &; (k) # 0= [[pi(k) —p;(F)[| <
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mt-MPC for the navigation of multi-agent systems under limited communication
Model - communication - problem setup

Swarm of M vehicles with nonlinear dynamics

Communication device

» Spatially close vehicles can communicate

Ipi(k) —pj(R)|| <7

> Define a shifting safe set X;(k) such that

Xi(k) N &; (k) # 0 = [|pi(k)

—pik)ll <7

Agents that can communicate will solve the

problem together

\/

We can solve the
problem together

| solve the
problem by
myself




mt-MPC for the navigation of multi-agent systems under limited communication
Model - communication - problem setup

Swarm of M vehicles with nonlinear dynamics

« Communication device
» Spatially close vehicles can communicate

lpi(k) —p;(k)[| <7
> Define a shifting safe set X; (k) such that

Xi(k) N &; (k) # 0= [[pi(k) —p;(F)[| <

* Agents that can communicate will solve the
problem together

 The communication graph is time-varying and position dependent

» Plug-in/out operations of other vehicles are allowed without request



Conclusions

= MPCis a promising approach for the constrained
navigation of autonomous vehicles.
* real-time optimization can effectively manage
time-varying constraints providing safety guarantees.
= |deal solution for applications that require
high-level decision-making.
Survey on the Impact of Advanced Control — IFAC’s Industry Committee (6]
Current Impact Future Impact
1. PID 1. Model-predictive control
2. System Identification 2. PID
3. Estimation and Filtering 3. Fault Detection and Identification
4. Model-predictive control 4. System Identification
5. Fault Detection and Identification 5. Process data analytics
6. Process data analytics 6. Estimation and Filtering
7. Decentralized and/or coordinated control 7. Decentralized and/or coordinated control
8. Robust control 8. Intelligent control
9. Intelligent control 9. Adaptive control
10.  Adaptive control 10.  Robust control
11.  Nonlinear control 11.  Nonlinear control
12. Discrete-event systems 12. Discrete-event systems
13.  Other advanced control technologies 13.  Hybrid dynamical systems
14.  Hybrid dynamical systems 14.  Other advanced control technologies
15.  Repetitive control 15.  Repetitive control
16. Game theory 16. Game theory

MPC is likely to play an increasingly
important role in shaping the future of
transportation.

[6] Samad, Tariq, et al. "Industry engagement with control research: Perspective and
messages." Annual Reviews in Control 49 (2020): 1-14.
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