

Dr. A. Carron

Prof. M.N. Zeilinger

POLITECNICO MILANO 1863

ETH zürich

Practical applications

Theoretical findings

Motivation

Known environments

..highly heterogeneous and unknown environments

Motivation

"How can I safely navigate an unknown environment without colliding with the surrounding?"

Motivation

"How can I safely navigate an unknown environment without colliding with the surrounding?"

Model
Predictive
Control

Optimize performance (cost function minimization)

Model Predictive Control

RH Algorithm

- i. At each **time k**: solve FHOCP.
- ii. Apply to the system the first input in the optimal sequence
- iii. At **time** k + 1: Get new measurements and repeat the optimization.

Elements of the FHOCP

Current state

Cost function

System model

- Constraints
- Terminal ingredients
 - Recursive feasibility
 - Constraint satisfaction
 - (Stability)

Model Predictive Control

Terminal ingredients

Terminal equality constraint

$$l_f = 0, \qquad \kappa_f = \bar{u}_a \qquad \mathcal{X}_f = \bar{x}_a$$

✓ Easy to satisfy when considering position-invariant systems (like vehicles)

Recursive feasibility

If the FHOCP admits a solution at time k=0, then a solution to the MPC optimization problem exists $\forall k>0$.

State constraints from local sensors

- The system evolves in a partially unknown environment and the surrounding is detected by onboard sensors (LiDARs, cameras, antennas...).
- Safe set $\mathcal{X}(\mathbf{k}, \mathbf{x}(\mathbf{k}))$ around the vehicle position (state)

time-varying state constraints $x_i \in \mathcal{X}(k,x(k))$

$$\forall i \in \mathbb{N}_0^N$$

time-varying constraints can lead to a loss of feasibility!

Safety - Shifting state constraints

$$\mathcal{X}(x(k)) = x(k) \oplus \mathcal{H} \qquad \begin{array}{c} \text{convex closed} \\ \text{polytopic sets} \\ \text{containing the origin} \end{array}$$

solution at time k

Safety - Shifting state constraints

$$\mathcal{X}(x(k)) = x(k) \oplus \mathcal{H} \qquad \begin{array}{c} \text{convex closed} \\ \text{polytopic sets} \\ \text{containing the origin} \end{array}$$

Candidate solution at time k + 1

$$\mathcal{X}(x(k)) = \{ \xi \in \mathbb{R}^n : H(\xi - x(k)) \leq h \}$$
 time-invariant

Safety - Shifting state constraints

$$\mathcal{X}(x(k)) = x(k) \oplus \mathcal{H} \qquad \begin{array}{c} \text{convex closed} \\ \text{polytopic sets} \\ \text{containing the origin} \end{array}$$

Candidate solution at time k+1

The candidate solution violates the constraint at time k+1

Safety - Shifting state constraints

✓ The following implementation guarantee the **recursive feasibility** of the problem

$$H(x_{i+1}-x_i) \leq h_i$$
 such that $\sum_{i=0}^N h_i \leq h, \quad \forall i \in \mathbb{N}_0^{N-1}$

Safety - Shifting state constraints

✓ The following implementation guarantee the **recursive feasibility** of the problem

$$H(x_{i+1}-x_i) \leq h_i$$
 such that $\sum_{i=0}^N h_i \leq h, \quad \forall i \in \mathbb{N}_0^{N-1}$

Candidate solution at time k+1

Safety - Shifting state constraints

✓ The following implementation guarantee the **recursive feasibility** of the problem

$$H(x_{i+1}-x_i) \leq h_i$$
 such that $\sum_{i=0}^N h_i \leq h, \quad \forall i \in \mathbb{N}_0^{N-1}$

Candidate solution at time k + 1

Safety - Unpredictable state constraints

$$\mathcal{X}(k,x(k)) = x(k) \oplus \mathcal{H}(k) \qquad \text{convex closed polytopic sets containing the origin} \qquad \mathcal{X}(k,x(k)) = \{\xi \in \mathbb{R}^n : H(k)(\xi-x(k)) \leq h(k)\}$$

Due to the time-varying unpredictable nature of the constraints the **recursive feasibilty cannot be guaranteed**.

time-variant

[2] Saccani, D., & Fagiano, L. Autonomous uav navigation in an unknown environment via multi-trajectory model predictive control. In 2021 European Control Conference (ECC)

Safety - Unpredictable state constraints

Sequence of feasible sets

$$\mathcal{S}(k) = \{ \mathcal{X}(j, x(j)), \forall j \le k \}, \quad \forall k$$

Admissible state

$$x(k) \in \mathcal{S}(k),$$

if exists a $j \leq k$ such that $x(k) \in \mathcal{X}(j, x(j))$.

Modified problem

Instead of: $x_i \in \mathcal{X}(k, x(k))$

Guarantee the existence of a feasible problem at each time step, such that: $x(k) \in \mathcal{S}(k)$

✓ Easy to prove the existence of an admissible control problem at each time step.

[2] Saccani, D., & Fagiano, L. Autonomous uav navigation in an unknown environment via multi-trajectory model predictive control. In 2021 European Control Conference (ECC)

Exploitation

Safe set $\mathcal{X}(\mathbf{k})$ considered at each time step k generally changes over time

Relying only on local information can lead to a conservative behaviour.

Multi-trajectory MPC formulation

[3] Saccani, D., Cecchin, L., & Fagiano, L. (2022). Multitrajectory model predictive control for safe UAV navigation in an unknown environment. IEEE Transactions on Control Systems Technology

Multi-trajectory Model Predictive Control (mt-MPC)

Intuitive idea

Multi-trajectory Model Predictive Control (mt-MPC)

Formulation

Two different input sequences sharing the first control action $\mathbf{u_0^e} = \mathbf{u_0^s}$

$$U^e = [\mathbf{u_0^e}^\top, \dots, u_{N-1}^{e^\top}]^\top \qquad U^s = [\mathbf{u_0^s}^\top, \dots, u_{N-1}^{s^\top}]^\top$$

Predict two different state trajectories sharing the first state $\mathbf{x_1^e} = \mathbf{x_1^s}$

$$X^e(x(k), U^e) = [\mathbf{x_1^e}^\top, \dots, x_N^{e^\top}]^\top \qquad X^s(x(k), U^s) = [\mathbf{x_1^s}^\top, \dots, x_N^{s^\top}]^\top$$

$$\min_{U^{e,s}} \sum_{i=0}^{N} l^e(x_i^e, u_i^e)$$

Safe trajectory is used to satisfy time-varying constraints

$$X^s \in \mathcal{X}(k), \quad x_N^s = \bar{x}^s$$

x(k)

Multi-trajectory Model Predictive Control (mt-MPC)

Formulation

➤ Partially decouple constraint satisfaction (safety) from cost function minimization (exploitation)

- Navigate a commercial drone in an unknown static environment
- Guarantee <u>persistent obstacle avoidance</u>
 despite the various sources of uncertainty
 (disturbances, model plant mismatch,...)
- Use only real time LiDAR measurements

[4] Cecchin, L., <u>Saccani</u>, D., & Fagiano, L. (2021). G-beam: Graph-based exploration and mapping for autonomous vehicles. In 2021 IEEE Conference on Control Technology and Applications (CCTA)

Model - sensor - uncertainty

• The controlled drone behaviour, can be approximated with a **linear model** with state $x(k) = [p(k) \ v(k)]^{\mathsf{T}}$.

Model - sensor - uncertainty

- The controlled drone behaviour, can be approximated with a **linear model** with state $x(k) = [p(k) \ v(k)]^{\mathsf{T}}$.
- The LiDAR measurements are used to derive an underapproximation of the free space with a convex polytope.

$$\mathcal{X}(k, x(k)) = \{ \xi \in \mathbb{R}^n : H(k)(\xi - x(k)) \le h(k) \}$$

mt-MPC for safe UAV navigation in an unknown environment Model - sensor - uncertainty

- The controlled drone behaviour, can be approximated with a **linear model** with state $x(k) = [p(k) \ v(k)]^{\mathsf{T}}$.
- The LiDAR measurements are used to derive an underapproximation of the free space with a **convex polytope**.
- Bounds on the prediction from data using a set membership approach to enhance the robustness of the MPC scheme.

Experimental results

mt-MPC for the navigation of multi-agent systems under limited communication

- Swarm of vehicles
- Communication between spatially close vehicles
- Guarantee persistent obstacle avoidance

mt-MPC for the navigation of multi-agent systems under limited communication Model - communication - problem setup

• Swarm of *M* vehicles with nonlinear dynamics

mt-MPC for the navigation of multi-agent systems under limited communication

Model - communication - problem setup

Swarm of *M* vehicles with nonlinear dynamics

- Communication device
 - > Spatially close vehicles can communicate

$$||p_i(k) - p_j(k)|| \le r$$

mt-MPC for the navigation of multi-agent systems under limited communication

Model - communication - problem setup

• Swarm of *M* vehicles with nonlinear dynamics

- Communication device
 - Spatially close vehicles can communicate

$$||p_i(k) - p_j(k)|| \le r$$

 \triangleright Define a shifting safe set $\mathcal{X}_i(k)$ such that

$$\mathcal{X}_i(k) \cap \mathcal{X}_j(k) \neq \emptyset \Longrightarrow \|p_i(k) - p_j(k)\| \leq r$$

mt-MPC for the navigation of multi-agent systems under limited communication Model - communication - problem setup

- Swarm of *M* vehicles with nonlinear dynamics
- Communication device
 - Spatially close vehicles can communicate

$$||p_i(k) - p_j(k)|| \le r$$

 \triangleright Define a shifting safe set $\mathcal{X}_i(k)$ such that

$$\mathcal{X}_i(k) \cap \mathcal{X}_j(k) \neq \emptyset \Longrightarrow \|p_i(k) - p_j(k)\| \leq r$$

 Agents that can communicate will solve the problem together

mt-MPC for the navigation of multi-agent systems under limited communication Model - communication - problem setup

- Swarm of *M* vehicles with nonlinear dynamics
- Communication device
 - Spatially close vehicles can communicate

$$||p_i(k) - p_j(k)|| \le r$$

ightharpoonup Define a shifting safe set $\mathcal{X}_i(k)$ such that

$$\mathcal{X}_i(k) \cap \mathcal{X}_j(k) \neq \emptyset \Longrightarrow \|p_i(k) - p_j(k)\| \leq r$$

- Agents that can communicate will solve the problem together
- The communication graph is time-varying and position dependent
 - > Plug-in/out operations of other vehicles are allowed without request

Conclusions

- MPC is a promising approach for the constrained navigation of autonomous vehicles.
 - real-time optimization can effectively manage time-varying constraints providing safety guarantees.
- Ideal solution for applications that require high-level decision-making.

Survey on the Impact of Advanced Control – IFAC's Industry Committee [6]			
Current Impact		Future Impact	
1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	PID System Identification Estimation and Filtering Model-predictive control Fault Detection and Identification Process data analytics Decentralized and/or coordinated control Robust control Intelligent control Adaptive control Nonlinear control Discrete-event systems Other advanced control technologies Hybrid dynamical systems Repetitive control	1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.	Model-predictive control PID Fault Detection and Identification System Identification Process data analytics Estimation and Filtering Decentralized and/or coordinated control Intelligent control Adaptive control Robust control Nonlinear control Discrete-event systems Hybrid dynamical systems Other advanced control technologies Repetitive control
16.	Game theory	16.	Game theory

MPC is likely to play an increasingly important role in shaping the future of transportation.

[6] Samad, Tariq, et al. "Industry engagement with control research: Perspective and messages." *Annual Reviews in Control* 49 (2020): 1-14.

- [1] Saccani D., et al. Model predictive control for multi-agent systems under limited communication and time-varying network topology. In: 2023 IEEE Conference on Decision and Control (CDC).
- [2] Saccani, D., & Fagiano, L. Autonomous uav navigation in an unknown environment via multi-trajectory model predictive control. In 2021 European Control Conference (ECC)
- [3] Saccani, D., Cecchin, L., & Fagiano, L. Multitrajectory model predictive control for safe UAV navigation in an unknown environment. IEEE Transactions on Control Systems Technology
- [4] Cecchin, L., Saccani, D., & Fagiano, L. G-beam: Graph-based exploration and mapping for autonomous vehicles. In 2021 IEEE Conference on Control Technology and Applications (CCTA)
- [5] Bolognini, M., Saccani, D., Cirillo, F., & Fagiano, L. Autonomous navigation of interconnected tethered drones in a partially known environment with obstacles. In 2022 IEEE CDC.