Best PhD Dissertation Award – Finalist Presentation Econometric methods and machine learning algorithms to investigate factors contributing to pedestrian crash severity Maria Rella Riccardi P.Eng., Ph.D. in Civil System Engineering University of Naples Federico II Department of Civil, Architectural and Environmental Engineering maria.rellariccardi@unina.it

Research purposes

The UN General Assembly proclaimed the "2nd Decade of Action for Road Safety"

Among the 2030 Agenda for Sustainable Development goals:

- Goal 3.6 (health)
 - →Halve the number of global deaths and serious injuries from road traffic crashes
- Goal 11.2 (cities)

→Improving road safety with special attention to vulnerable road users

The risk of fatality for pedestrian users is 9 times greater than that for occupants of 4-wheeler vehicles • To provide support for the choice of the appropriate prediction method

- To compare econometric models and machine learning tools:
 - by their capability in identifying significant explanatory variables affecting crash severity (Qualitative evaluation)
 - by their model performances (Quantitative evaluation)
- To investigate factors associated with the most severe pedestrian crashes considering the coexistence of pedestrian, driver, vehicle, roadway, crash, and environmental factors
- To contribute to meet the long-term goal to move close to zero deaths on roads by 2050

Methodological approach

- Three national databases were used:
 - Great Britain, 2016 2018
 - Sweden, 2015 2019

ECONOMETRIC MODELS

DECADE OF ACTION FOR

ROAD SAFETY

2021 - 2030

MACHINE LEARNING ALGORITHMS

- Italy, 2014 2018
- Crash severity was the dependent variable
- A weighted approach was adopted to deal with the imbalanced data
- 4 econometric models and 5 machine learning tools were developed

	Great E	Britain	Swe	den	Italy		
Crash severity	Ν	%	Ν	%	Ν	%	
Slight Injury	49,631	73.7	8,788	93.2	00 062	07 1	
Serious Injury	16,359	24.3	426	4.5	90,003	97.1	
Fatal	1,366	2.0	212	2.3	2,969	2.9	
Total	67,356	100.0	9,426	100.0	101,032	100.0	

Main results

The performance metrics used to compare the models, based on the confusion matrix, were F-measure, G-mean, and Area Under the Curve.

	Great Britain									Sweden									_	Italy							
	Econometric models Machine learning								Econometric models			Machine learning						Econor	netric models	Machine learning							
	MNL	Mixed MNL	OL	Mixed OL	AR	СТ	RF	ANN	SVM		MNL	Mixed MNL	OL	Mixed OL	AR	СТ	RF	ANN	SVM		Logit	Mixed Logit	AR	СТ	RF	ANN	SVM
Fatal													Fata	al					Fatal								
F-measure	0.28	0.53	0.00	0.16	0.05	0.16	0.57	0.18	0.95	F-measure	0.15	0.14	0.20		0.06	0.19	0.46	0.48	0.79	F-measure	0.15	0.16	0.09	0.13	0.31	0.15	0.65
G-mean	0.50	0.65	0.04	0.33	0.36	0.72	0.77	0.66	0.95	G-mean	0.64	0.81	0.75	*	0.18	0.61	0.76	0.82	0.86	G-mean	0.76	0.76	0.62	0.73	0.75	0.75	0.78
AUC	0.87	0.94	0.85	0.85	0.79	0.82	0.88	0.78	0.88	AUC	0.85	0.86	0.89		0.80	0.71	0.95	0.91	0.86	AUC	0.84	0.84	0.77	0.79	0.79	0.83	0.70
Serious									Serious																		
F-measure	0.21	0.41	0.41	0.40	0.39	0.29	0.90	0.26	0.95	F-measure	0.10	0.23	0.10		0.14	0.14	0.17	0.10	0.73								
G-mean	0.36	0.58	0.43	0.58	0.54	0.46	0.92	0.43	0.96	G-mean	0.47	0.63	0.50	*	0.27	0.62	0.58	0.53	0.85								
AUC	0.62	0.68	0.61	0.62	0.58	0.47	0.71	0.76	0.76	AUC	0.60	0.49	0.59		0.39	0.63	0.79	0.67	0.54								

Variables identified	Fatal	Serious
Econometric and machine learning models	19	18
Only econometric models	1	1
Only machine learning	6	7

Factors affecting: Fatal crashes

Rural area

Speed limit \geq 50 mph

Darkness

Weekend

Wet or damp pavement

Truck involvement

Vehicle age \geq 15

Involvement of articulated vehicles

Heavy oil vehicles

Engine capacity (CC) \geq 3,000

Pedestrian aged over 75

Male pedestrian

Frontal vehicle impact

Male driver

Driver aged under 25

Commuting to/from work

* The mixed OL did not arrive at convergence

Fatal crashes

Not at intersection

Slippery pavement

Truck involvement

Vehicle with trailers

Male pedestrian

Male driver

Pedestrians aged over 75

Pedestrian alcohol/drug use

Driver aged 25-34 years

Speed limit \geq 60 km/h

Rural area

Darkness

Weekday

Variables identified	Fatal	Seriou
Econometric and machine learning models	13	12
Only econometric models	0	0
Only machine learning	5	6
Factors affecting:		

Serious crashes Speed limit = 40-50 km/h Darkness Weekday Vehicle with trailers Pedestrians aged over 75 Pedestrian alcohol/drug use Male pedestrian Driver alcohol/drug use Driver aged over 75 Female driver

Variables identified	Fatal
Econometric and machine learning models	13
Only econometric models	0
Only machine learning	5

Factors affecting:

Fatal crashes
Rural area
Higher speed roads
Tangent
Darkness
Weekend
Wet pavement
Truck involvement
Vehicles with deficiencies
Pedestrian aged over 75
Pedestrian alcohol use
Driver inappropriate behaviour
(disobeying stop sign, distraction, speeding, and tailgating)
Driver disobeying pedestrian crossing facilities
Driving exceeding the prescribed driving period
Driver illness
Driving under drug influence or sleeping
Driver aged under 25

Bold denotes factors significant in all databases

Conclusions

Roadway factor Environmental factor Vehicle factor Road user factor

Methodological considerations

- Econometric models:
 - In small sample sizes the OL performed reasonably well
 - Unordered models outperformed ordered models when the sample size increases
 - The random parameter models provided evidence of the existence of heterogeneity among data

Serious crashes

Wet or damp pavement

Number of vehicles ≥ 2

Driver aged under 25

Pedestrian aged over 75

Vehicle skidding and overturning

Darkness

Engineering considerations and safety countermeasures

- Establish a road hierarchy giving the highest priority to pedestrians and then to the other road users.
- Plan specific routes for trucks, avoiding their transit in places highly frequented by pedestrians

• AR, CT, and RF exhibited lower performances but produced comprehensible scenarios

• Uncovered **more hidden correlations among data** than the econometric models

 The joint use of econometric methods and machine learning algorithms may provide more insights on factors contributing to fatal and serious pedestrian crashes

