

Italy Section

for Humanity

C-ITS services and advanced vehicle control for complex traffic scenarios Angelo Coppola

RESEARCH TOPIC

- innovative C-ITS Develop strategies for cooperation between vehicles and between vehicles and infrastructures based on V2X communication; this aim includes the development of reliable and resilient control architectures to increase the performance of automated and connected driving.
- Develop a virtual simulation environment to test and validate C-ITS strategies in several different complex traffic scenarios.

MOTIVATIONS

- Qualitative and quantitative evaluation of C-ITS strategies are usually performed in simplified conditions, e.g., simplified/neglected road traffic environment, predefined manoeuvrers and linear vehicle dynamics model.
- New autonomous/automated driving systems must be resilient to uncertainties, as well as reliable and robust in any traffic situation
- The idea is to tailor the theoretical results with respect to practical problems, e.g., mixed traffic flow, heterogeneous vehicles and nonlinear uncertain vehicles models.

MiTraS SIMULATION PLATFORM

Mixed Traffic Simulator (MiTraS) co-simulation platform has been designed and implemented for validating different control strategies in realistic road traffic scenarios (e.g., in presence of human-driven vehicles, road intersections, traffic lights and so on).

- Matlab/Simulink
 - Vehicle Dynamics;
 - Sensors; Ο
 - 3D road environment;
- SUMO for road traffic environment.

TRAFFIC SCENARIOS

- Urban traffic scenarios
 - Unsignalized/Signalized intersection;
 - Turn maneuver.
- Extra-urban traffic scenarios
 - Platooning;
 - Lane change/overtaking maneuver;
- Road section restriction;
- Emergency Breaking.

URBAN SIGNALIZED INTERSECTION CROSSING

Green Light Optimal Speed Advisory (GLOSA) service provides an optimal speed profile to cross an intersection exploiting Traffic Light Signals information

f(v)minimise subject to $V_{min} \leq V_r \leq V_{max}$ $a_{min} \leq a_r \leq a_{max}$ phase_i $(t + \Delta t_{tls}(V_r)) = Green$

One-factor-at-a-time based experiment

- TLS cycle duration

end