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Current ITS Limitations

Machine learning-based approaches
are efficient and accurate, but their predictive

process is black-box.[2]

Physics-based models
are interpretable, but show limitations when
applied to dynamics of complex systems.[1]

Active and explainable data-driven monitoring 
systems are required

both to be compliant with restrictive certification requirements and to 
provide additional knowledge of the underlying processes.

Mechanical and electronic advancements increase
transportation system complexity
This limits the performance of traditional model-based approaches
and poses a challenge when considering active monitoring applications.
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Main Contributions

Promoting ITS functionalities by 
combining physics and machine-learning
proposing a new methodology to combine physics-based
and black-box models to reconstruct a system behavior.

Enhancing ITS diagnostics and user 
monitoring capabilites
by resorting to advanced and machine- and deep-learning 
techniques to perform real-time vehicles’ active monitoring.

Improving black-box models 
interpretability

leveraging explainable AI techniques and engineering 
features that are related with the physics of the system.
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ITS Contributions for Air Vehicles
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Health Monitoring

Continuous wear and usage 
monitoring,  allowing for a 
precise diagnostic in a 
predictive maintenance 
perspective.

Usage Monitoring

Annotation of the regimes 
performed, to trace actual 
aircraft usage spectrum 
and relate it to the 
components’ wear.

Diagnostics and Prognostics in Helicopters
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An interpretable AI-based system is produced to 
early detect failures for the 88 components from 
HI extracted from their vibrations during flight.

Transmission Vibration Monitoring

The system is based on convolutional autoencoder, cepstral analysis and 
one-class support vector machines.
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The reconstruction error for 
each HI is considered in 
anomalous instances to infer the 
fault causes.

Transmission Vibration Monitoring

21425025.0 (2021). «Method and system for the anomaly detection of the components of a helicopter’s transmission». 
Applicants: Politecnico di Milano, Leonardo S.p.A. (Inventors: J. Leoni, M. Tanelli, A. Palman, A. Bellazzi, F. Bianchi, L. Bottasso), EU patent, filed on 18/05/2021. 

J. LEONI, M. Tanelli, A. Palman A New Comprehensive Monitoring and Diagnostic Approach for Early Detection of Mechanical Degradation in Helicopter Transmission Systems, Expert System With Applications, Elsevier, 2022. 
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Problem Statement
The supervised classifier[3] assesses 96% F1-Score in recognizing 49 regimes. However, a regimes subset achieves 
lower performances that the average. Therefore, a closed-loop pipeline is designed that includes:

1. Pre-processing relies on functional data analysis[4] to clean and aggregate regimes into macro-categories; 
2. Post-processing disaggregate the macro-categories leveraging a functional fuzzy C-Means[5] approach.
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Closed-Loop Regimes Recognition Performances
The supervised classifier[3] assesses 96% F1-Score in recognizing 49 regimes. However, a regimes subset achieves 
lower performances that the average. Therefore, a closed-loop pipeline is designed that includes:

1. Pre-processing relies on functional data analysis[4] to clean and aggregate regimes into macro-categories; 
2. Post-processing disaggregate the macro-categories leveraging a functional fuzzy C-Means[5] approach.

21425046.6 (2021). “Method and system for the classification of the flight regimes of an air vehicle, by means of 
measures acquired during the flight”. 

Applicants: Politecnico di Milano, Leonardo S.p.A. (Inventors: E. Villa, F. Zinnari, J. Leoni, M. Tanelli, D. Mezzanzanica, 
U. Mariani, A. Baldi), EU patent, filed on 11/10/2021. 

J. LEONI, F. Zinnari, E.Villa, M. Tanelli, A. Baldi Flight Regimes Recognition in Actual Operating Conditions: a Functional
Data Analysis Approach, Engineering Applications of Artificial Intelligence, Elsevier, 2022. 
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Motorcycles crashes are not
easily recognizable by sensor
measurements, since not
necessarily related to a fall.[6]

Approaches in the literature 
accurately recognize low 
frequency or high frequency 
events, but none of them is
effective on both.[7]

However, to timely perform
eCall and provide medical
support such an algorithm is
required.[8]

Motorcycles Accident Detection
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J. LEONI, S. Gelmini, G. Panzani, M. Tanelli, M. S. Savaresi, Optimal Automatic eCall in Powered Two-Wheeler: A Dynamics-Based Approach, IEEE Transaction on intelligent transportation systems



Health and Usage Monitoring in eScooters

Mechanical Specifications

The eScooters mechanical specifications effect on 
safety and drivability has been poorly investigated. 
Therefore, practical guidelines are required.

Riders Behavioral Factors

Functionalities are required to estimate riders driving 
style, travelled road surfaces, two-passengers 
condition, and enforce safety accordingly.

eScooters represent an effective first-last mile transport 
means, which is also engaging, fun, and sustainable.

However, recent researches reveal that accidents involving
eScooters riders are increasing.[11]

Therefore, systems are required to enforce riders safety.[12]
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J. LEONI, M. Tanelli, S.C Strada, M. S. Savaresi, Assessing e-scooters safety and drivability characteristics: a quantitative analysis, 10th IFAC Symposium: Advances In Automotive Control, 2022. 
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Road Quality and Driving Style Estimation
K-Means results for quality estimation, according to 70-

30 hold-out validation reveal a 99.9% accuracy.

J. LEONI, A. Lucchini, M. Tanelli, S. C. Strada, M. S. Savaresi, Safety-Oriented Methods Based on Road Profile and Driving Style Estimation in eScooter, IFAC WC 2023. 
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K-Means results for style estimation, provides results
that are consistent with the reported riders’ behavior.
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The hierarchical and modular classifier combines 3 random forest predictors.
The first is composed of 2 trees of depth 3 and considers features referred to 

vertical acceleration and pitch rate;
The second and third are composed of 5 trees of depth 3. The second also

consider longitudinal acceleration features.

Rider Mass Estimation

J. LEONI, M. Tanelli, S.C Strada, M. S. Savaresi, Real time passenger mass esstimation for improving e-scooters safety and sustainability, 
American Control Conference 2023. 
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Two-Passengers Detection

Random forest classifier composed of 6 trees with depth .
Including mass estimate in the detection pipeline increases

the F1-Score from 95.52% to 99.18%.

double
single

102021000017558 (2021). “System and method for determining an excessive number of passengers on an eScooter” 
Applicants: Politecnico di Milano, Edison S.p.a. (Inventors: J. Leoni, A. Lucchini, M. Tanelli, S. Strada, S. Savaresi), Italian patent, 

filed on 10/12/2021. 
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According to an alternate 
optimization  approach, local
models are trained and 
confidence is estimated.

J. LEONI, V .Breschi, S. Formentin, M. Tanelli, An Autonomous Physics-Based Mixture of Expert for Optimal Output Reconstruction in Dynamical Systems, Automatica. 
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J. LEONI, V .Breschi, S. Formentin, M. Tanelli, An Autonomous Physics-Based Mixture of Expert for Optimal Output Reconstruction in Dynamical Systems, Automatica. 
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API-MoE Performance Evaluation

Mean Absolute Error (MAE)
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Physics-Based Model[18]

�̇� = −𝝓𝟏𝟏𝛽 − 𝝓𝟏𝟐𝑟/𝑉. +𝝓𝟏𝟑𝛿
�̇� = −𝝓𝟐𝟏𝛽/𝑉. −𝝓𝟐𝟐𝑟/𝑉., +𝝓𝟐𝟑𝛿/𝑉.

The provided dataset collects 𝜷 recorded in both standard and 
extreme non-linear conditions. Also, it includes trials 
performed in winter and in summer, which affects the stiffness.

3 API-MoE architectures have been compared, each one composed of 2 models. 
In all cases, the input regressor is 𝑥 𝑡 = [𝑉. ,

0
1!
, 𝑟, 𝛿, 𝑎. , 𝑎2]. 

Physics-Based and 
Physiscs-Based

Physics-Based and Polynomial
Regression

Physics-Based and 
Random Forest

!!

!" "# #

$

%

β is the vehicle’s mass[𝑑𝑒𝑔]
𝛿 is the steering angle[𝑑𝑒𝑔]
𝑟 is the yaw rate [𝑑𝑒𝑔/𝑠]
𝑉. is the longitudinal speed [𝑚/𝑠]

Sideslip Estimation 
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API-MoE with two physics-based local experts provides the best results
respect to 70-30 holdout validation.

API-MoE Architectures Comparison
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Literature Comparison
The two physics-based API-MoE
performance have been
compared to the state-of-the-art
approaches.

𝜆3 = 10,
𝜆4 = 105

𝜆 = 106((
𝜌 = 1065

M
oE

Pa
ra

m
et

er
s

Serial

Parallel

LIME+SHAP

20700 20750 20800 20850 20900 20950

Time [samples]

−6

−4

−2

0

2

4

6

β
[d
eg
],
β̂
[d
eg
]

Serial

Parallel

LIME + SHARP

MoE

True



Promoting ITS functionalities by 
combining physics and machine-learning
proposing a new methodology to combine physics-based
and black-box models to reconstruct a system behavior.

Enhancing ITS diagnostics and user 
monitoring capabilites
by resorting to advanced and machine- and deep-learning 
techniques to perform real-time vehicles’ active monitoring.

Improving black-box models 
interpretability

leveraging explainable AI techniques and engineering 
features that are related with the physics of the system.
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Figure 21: Engine monitoring framework.

The engine is a black box system 
for LDH, as General Electric 
produces it.

However, an health monitoring 
system is required to promptly 
recognize anomalous working 
condibons and alert the pilot.

A system is designed to 
characterize the healthy operabng 
regions of the engine. 
Anomalous behaviours correspond 
to instances falling outside the 
iden]fied regions.

Engine Monitoring
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6 clusters are produced by Gaussian Mixture Models, 
3 on ground and 3 in flight

Engine Monitoring
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Repeatability and Similarity Indexes
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Repeatability index is based on three contributions: 

1. Duration, to capture the spread in duration of 
different instances of the same regime;

2.     Signals Trend, to account for the differences in
the pilot driving style or flight conditions;

3.     Outliers, to consider the number of instances
that vary significantly from the mean ones.

Similarity index is computed for each pair of regimes. It relies on the overlap between the distribu]ons 
of the features considered by the supervised classifier extracted for the two regimes. Therefore:

1. First, the median instance is computed for the considered regime;

2. Then, for the two medians of interest, the supervised classifier
features are extracted, and their distance is computed.

Both indexes relies on functional data 
analyisis[4] and simplicial depth[5].
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Unsupervised Regimes Recognition 
Supervised
Classifier

Pre-Processing

Unsupervised
Classifier

Repeatability
Index

Similarity
Index

Post Processing

Complete
Spectrum

Aggregated
Spectrum

Aggregated
Predictions

Complete
Predictions

Repeatability and similarity indexes lead to two macro-
categories.
The supervised classifier was retrained to predict the new 
spectrum, in which these regimes are aggregated.
Then, an unsupervised classifier is designed to 
disaggregate each of the predicted macro-categories.

Fuzzy
C-Mean!!"#$%

Duration-based 
Clustering Concatenation Spectrum predictions

for the !!" macro-class

Fuzzy
C-Mean!&#'(

Short

Long Spectrum regimes

Spectrum regimes

Instances of the 
!!" aggregated macro-class

• Functional data analysis is resorted to retain temporal 
information and signals’ dynamics;

• A hierarchical structure is designed to manage 
separately regimes of different duration;

• Fuzzy C-Means is leveraged to prevent the 
overreliance on the training labels.

• Dimensionality reduction is performed to provide 
interpretable clustering views to the domain expert.

21425046.6 (2021). “Method and system for the classification of the flight regimes of an air vehicle, by means of measures acquired during the flight”. 
Applicants: Politecnico di Milano, Leonardo S.p.A. (Inventors: E. Villa, F. Zinnari, J. Leoni, M. Tanelli, D. Mezzanzanica, U. Mariani, A. Baldi), EU patent, filed on 11/10/2021. 

J. LEONI, F. Zinnari, E.Villa, M. Tanelli, A. Baldi Flight Regimes Recognition in Actual Operating Conditions: a Functional Data Analysis Approach, Engineering Applications of Artificial Intelligence, Elsevier, 2022. 



Proposed SoluPon
Let ! be the 75% of samples

referred to the anomalous condition.

"#! collects the ! healthy samples of 
$,	considered to estimate the 

quantiles

'("	and '(#	collect ! healthy and 
anomalous samples of ), 

respectively.
They are considered to estimate 

*$%.

The optimal ' maximizes +&'.

+,"	and +,#	collect ! healthy and 
anomalous samples of *, 
respectively.
They are considered to estimate 
*$%.

The optimal + maximizes +&'.

- is the derivative filter gain, 
equals to 100.
. is the sampling period.

/(	and /) are the parameters to 
optimize.

J. LEONI, S. Gelmini, G. Panzani, M. Tanelli, M. S. Savaresi, Optimal Automatic eCall in Powered Two-Wheeler: A Dynamics-Based Approach, IEEE Transaction on intelligent transportation systems. 
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Road Quality Estimation
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Driving Style Assessment
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Let 𝒚 𝒕 be the output of a 2nd order autoregressive 
process excited by a PRBS input 𝑢(𝑡), with a 
superimposed white noise of 𝝈 = 𝟏𝟎'𝟐.

The process is composed of 𝑴 = 𝟐 concurrent local 
models defined by coefficients 𝜽. 
Each local model can be computed as:
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The process behavior has been simulated for 500 
samples. 

Also, the confidence of each model in generating the 
output has been defined.
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2 Concurrent Models
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2 Concurrent Models

API-MoE perfectly learns the local models parameters and the confidence, assessing a GoF of 0.995 and a MAE of 0.041.

MoE configuration: 𝜆3 = 5 ⋅ 10:, 𝜆4 = 106:, 𝜆 = 10;, 𝜌 = 1065


