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Autonomous Driving in 
Urban Areas

PROBLEMS

§ Many road users (e.g., other vehicles and pedestrians)

§ Complex structures (e.g., buildings and intersections)

LOCALIZATION
OBSTACLES 
DETECTION

PATH
PLANNING

2



Localization

Definition:

Localization consists in the estimation of a pose, that is the position and orientation of a vehicle 
with respect to a known reference frame at a certain time.

Global Navigation
Satellite System 

(GNSS) 

Urban canyon

Degradation of 
the estimate

Localization through scene 
understanding:
• Cameras
• LiDARs (Light Detection 

and Ranging)
• Radars

SIGNA
L
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Localization: Local and Global

LOCAL ESTIMATE 
REFINEMENT

GLOBAL 
LOCALIZATION

∆x, ∆y, ∆z, roll, pitch, yaw

INPUT
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Existing approaches

PC-BASED
• Observer: point cloud
• Map: point cloud

CAMERA-BASED
• Observer: camera
• Map: set of images

CAMERA-TO-PC
• Observer: camera
• Map: point cloud
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Case Study: CMRNet

Cattaneo, Vaghi et al., 2019
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• Rely on geometry and visual 
information

• Only cameras on-board vehicles
• Outstanding results on local 

localization task

Initial error range: [-2m, 2m] and[-10°; +10°]
Median translation error: 0.46 m
Median rotation error:  0.97°



CMRNet reliability
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Issues:

• Presence of large errors

• Approach not suitable for critical scenarios

Validation Samples
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Analysis of CMRNet accuracy in different 
scenarios (1)
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(a)

(b)
(a) (b)

GT frame GT frame

Initial errors
Initial errors

predictions
prediction
s

AVG Accuracy:
0.48 m 1.7°

AVG Accuracy:
0.98 m 1.2°



Uncertainty Estimation
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Uncertainty:
• Situations in presence of imperfect or unknown information
• Epistemic: when estimated wrt the model output

§ The aim is to represent a posterior probability distribution p 𝜽 𝑫)

Few approaches for camera localization:
• Camera-only (Kendall et al. 2017)
• Lack of comparison between existing methods



Approaches for uncertainty estimation in 
a regression task
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In deep learning there are three different 
approaches:
• Monte Carlo dropout (Gal et al. 2016)
• Deep Ensemble (Lakshminarayanan et al. 2017)
• Deep Evidential regression (Amini et al. 2020)
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Deep Evidential Regression
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• Model learns to predict parameters of a 
Normal Inverse Gamma distribution: 

𝒎 = (𝜸, 𝝂, 𝜶, 𝜷)

• Direct uncertainty estimate
• Regression of a value x:

Prediction: 𝜇' = 𝜸 Epistemic: 𝜎'( =
𝜷

𝒗 𝜶,𝟏

OOD data

GT

Prediction

Epistemic

Data



UA-CMRNet with Deep Evidential 
Regression (1)
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* Quaternion representation

LIDAR IMG

RGB IMG

CMRNet
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UA-CMRnet with Deep Evidential 
Regression (2)
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UA-CMRNet results: detecting 
localization failures (1)
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UA-CMRNet results: detecting
localization failures (2)
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Error (m
)

0.00

2.32

run 00 – KITTI dataset



Localization Accuracy
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M. Vaghi et al., A comparison of uncertainty estimation approaches for DNN-based camera localization, submitted to the Internation Conference of 
Robotics and Automation, London, 2023

• CMRNet + DE achieves best 
localization results

• Reduction of std in the error 
distribution and good uncertainty 
estimates

• CMRNet + DER advantage of directly 
estimating uncertainty with a single 
prediction 



UA-CMRNet: application within an EKF
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Error (m
)

0.00

89.30

GT Trajectory

Sensor
Measurements

+
Motion Model

UA-CMRNet
predictions

+
Covariance Matrix

(Uncertainty)

EKF

POSE TRACKING



UA-CMRNet: application within an EKF 
(2)
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CMRNet + DECMRNet + MCD CMRNet + DER



Thank you for your attention!
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