

Student Contest 2020

Sponsored by the German Chapter of the IEEE EMC Society

Start date: 15.06.2020 End date: 31.12.2020

Eligible participants:

Students of Electrical Engineering and Information Technology or similar subjects with Bachelor degree or below

Contact:

Send the completed solution sheet via email to: Prof. Dr.-Ing. Matthias Hampe, m.hampe@ostfalia.de

Choose your decoupling capacitor: Which values of \mathcal{C} and \mathcal{R} minimize the noise current $i_{N}(t)$?

Noise current $i_N(t)$ through internal resistance $R_i = 50 \Omega$, directly connected with both copper layers at $(x_N, y_N) = (160 \text{ mm}, 120 \text{ mm})$

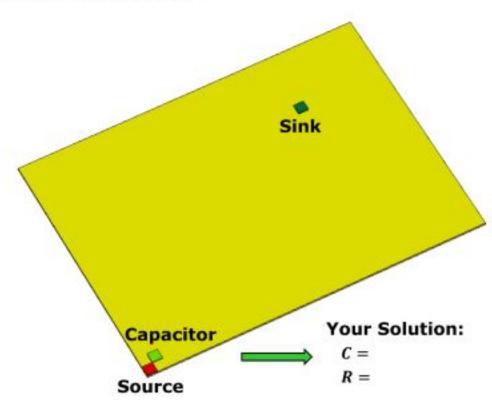
Printed Circuit Board

Length 200 mm, width 150 mm, height 1.5 mm, substrate FR-4 with $\varepsilon_{\rm r}=4.3, \tan(\delta)=0.025,$ both sides full copper layer

Source

Ideal current source with current $i_0(t) = 1 \text{ mA} \cdot \sin(2\pi \cdot 355 \text{ MHz} \cdot t) + 1 \text{ mA} \cdot \sin(2\pi \cdot 472 \text{ MHz} \cdot t),$ directly connected with both copper layers at $(x_0, y_0) = (3 \text{ mm}, 3 \text{ mm})$

Decoupling Capacitor


Series equivalent circuit with $1 \text{ pF} \leq \mathcal{C} \leq 1 \text{ \muF},$ $10 \text{ m}\Omega \leq R \leq 10 \Omega,$ L = 4 nH, directly connected with both copper layers at $(x_D, y_D) = (9 \text{ mm}, 9 \text{ mm})$

Solution Sheet 2020

Sponsored by the German Chapter of the IEEE EMC Society

Participants, up to 3 students:

Email address of contact person:

How was the solution determined and why is the selected capacitor so effective?