Graphene and shielding

SiO Graphene project

Lennart Hasselgren
Senior EMC Engineer
Content

• Project scope
• Shielding challenge
 • New material
• SE measurement technique
• The future
Participants

- Institute
 - RISE IVF, Mölndal
 - RISE, Linköping
 - RISE, Borås
- EMC technology
 - EMC Services

- Manufacturers, products
 - Atlas Copco Industrial Technique
 - Megger Sweden

- Manufacturers, material
 - Graphmatech
 - Biofiber Tech Sweden
 - Meva Energy
Project scope

- Shielding for EMC design
 - Main interest for manufacturers: 30 – 1000 MHz
- Replacement of existing Ni-plating material
 - Environmental issue
- Replacement of metal enclosure
 - Cost and weight issue
- Graphene inclusion in polyimide with kept performance
 - How much is needed?
 - Mechanical performance
- Will be demonstrated in actual products from Atlas Copco Industrial Technique and Megger Sweden
- How to measure – today focus
Shielding definition – traditional theoretical approach

Theoretical approach infinitely large plate
The multiple reflection parameter, M, is often neglected

\[SE = \frac{E_2^2}{E_1^2} \] or \[SE = R + A \] [dB]
(shielding effectiveness)

\[R = \text{Reflection loss} \]
\[A = \text{Absorption loss} \]
\[R = f \text{ (wave impedance, material, frequency)} \]
\[A = f \text{ (material, thickness, frequency)} \]
Shielding – theoretical calculation example

- Only provides material influence
 - Conclusion from graph: the material is normally not a big issue
 - Not a valid assumption for Graphene?
- Matching interfaces not included
- Results at low frequency not valid
 - Geometry parameters needed
 - Often lower values for magnetic shielding

Ref.: HW Ott

oh1061e
Shielding leakage - the dominant aspect
Coated parts – design challenge

Compatibility between
- 2 shielding parts
- Other mating surfaces
- Shielding connectors
- Filter connection (for external filtered interface)
Measurement technique

- 3 levels
 - Material level – survey method
 - Material level – test fixture
 - Product level
 - Standardized method – compare EUTs with CISPR 16 emission method
 - What do we find from this
 - Reference method with internal generator?
 - Tailored test object?
- Resistance measurement methods
 - Material level – LF measurement of resistance
 - Suitable for quick selection and evaluation
Material level test – survey method

- Test setup using loop antennas
 - 1 – 1000 MHz OK
- Quick simple method
 - Near field measurement
 - Impact on antenna factor?
 - Edge leakage?
 - Antenna distance not so critical
First results #1 – survey method (loops)

- Test setup using loop antennas
 - 20 kHz – 8 GHz
- Comparison with reference Cu plate
- Some resonances
 - Mainly at > 1 GHz – loop behavior
 - Below 1 GHz – setup resonances?
- Material XG-1
 - ca 20 dB difference from Cu
 - Resonance at 100 MHz
First results #2 – survey method (loops)

- Test setup using loop antennas
 - 20 kHz – 8 GHz
- Comparison with reference Cu plate
- Much smaller probe
 - Poor resolution < 100 MHz
 - Less resonances
 - Less coupling loop-mtrl?
 - Less edge leakage?
 - Mainly at > 3 GHz – loop behavior
- Material XG-2
 - Approx. same as Cu
 - Resolution probably limited
Material level test – Mode Stirred Chamber (MSC)

- Test setup using mode-stirred chamber
- High quality method
 - Far field measurement
 - but only useable for approx. $f > 500$ MHz
- Complex setup, special equipment
 - IEC 61726 (passive component test)
 - MIL STD-285 and MIL-DTL 83528 are only using fixed antenna
- Example showing gasket measurement
 - Source: KI report 2004:2E “Ageing of shielding joints” (Lena Sjögren)
Material level test – small test fixture

Gasket measurement

Source: “RF shielding performance of thin flexible graphene nanoplatelets-based papers“ (Tamburrano et al), IEEE 2014
Test fixture aspects

- Test setup using small test fixture
 - FCSH = Flanged Coaxial Sample Holder
- Higher quality method
 - Near field measurement
 - Low resolution < 100 MHz
 - E or H-field probes?
- Relatively simple equipment
- Standard ASTM D4935-18 (intended for gaskets) can be used as reference
Shielding test method, product level

- Approach:
 - Measure the attenuation through the enclosure

- Alternatives:
 - Figure: Standard IEEE 299 for radiated cabinet measurement
 - CISPR25 method for conducted measurements (transfer methods)
 - Many IEC standards for cables and connectors
 - Not relevant

- Cons for IEEE 299:
 - 30-300 MHz not covered for enclosures
 - Interfaces of connectors and cables may be missed in IEEE method
 - Electronic HW influence not included
Product level EMC testing, EN standard

Radiated emission Conducted emission

EUT placed on specified height from GRP – tabletop or floor standing
Handling resonances in measurement

Smoothing of result may be made in 3 domains

• Geometry domain: mode stirring
 • Averaging of angle of incidence by changing the chamber

• Frequency domain
 • Smoothing by averaging over a frequency bandwidth

• Antenna domain
 • Averaging by turning the object
Future projects

• SiO Graphene program welcomes new initiatives
• In particular with focus on electronics
• Ideas?
Response from audience

• Tips från coacherna?